Cerium Chemical Conversion Coating for Aluminum Alloy 2024-T3 and Its Corrosion Resistance

CORROSION ◽  
2004 ◽  
Vol 60 (3) ◽  
pp. 237-243 ◽  
Author(s):  
C. Wang ◽  
F. Jiang ◽  
F. Wang

Abstract New golden, yellow-colored cerium chemical conversion coatings on aluminum alloy 2024-T3 (AA2024-T3 [UNS A92024]) surface at room temperature were obtained by immersing the alloy into a cerium solution containing zinc chloride (ZnCl2) and hydrogen peroxide (H2O2). Electrochemical methods and immersion tests were used to study the dynamics of the coatings formation and their corrosion resistance in 3.5% sodium chloride (NaCl) solution. The morphologies of the coatings were recorded by scanning electronic microscopy (SEM). Energy-dispersive x-ray (EDX) analysis and x-ray photoelectron spectroscopy (XPS) were used to analyze the chemical composition and the oxidation state of the elements in the coatings. Polarization experiments and immersion tests in 3.5% NaCl solution showed that the sensitivity to pitting corrosion for the conversion-coated AA2024-T3 was greatly lower than that of the untreated specimens, and the corrosion resistance improved markedly. SEM photographs showed that the coatings consisted of a lot of spherical particles. EDX and XPS experimental results showed that the coatings were made up of oxygen, cerium, and aluminum, and the spherical particles contained higher contents of cerium and oxygen than the other sites. Cerium was mainly in the form of Ce4+. The mechanisms of conversion coatings formation and improvement on corrosion resistance also are discussed.

2011 ◽  
Vol 308-310 ◽  
pp. 2458-2462 ◽  
Author(s):  
Li Hui Yang ◽  
Mi Lin Zhang ◽  
Cun Guo Lin ◽  
Jian Hua Wu

Molybdate conversion coatings were prepared on AZ31B Mg alloy in a molybdate based solution with additives of sodium fluoride (NaF) or lanthanum nitrate (La(NO3)3). The effects of F- and La3+ additives on the morphology and on the corrosion resistance of the molybdate coatings were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and potentiodynamic polarization analysis. The results revealed that these additives could accelerate the deposition of molybdenum on the surface of AZ31B magnesium alloy. It can be seen that the composite conversion coatings consist of many spherical particles. It is also found that the corrosion resistance is greatly improved after molybdate treatment. The films formed in F- additive solution showed lower corrosion current density than in La3+ additive solution.


2010 ◽  
Vol 129-131 ◽  
pp. 819-823
Author(s):  
Yan Bo Wu ◽  
Si Si Zeng ◽  
Peng Sun

Ti-W composite coating was made by chemical conversion method on aluminum alloy. By orthogonal experiment, the optimal coating-forming conditions were the concentration ratio of TiOSO4 and Na2WO4 was 0.3 g/L:0.3 g/L、KMnO4 1.0 g/L、NaF 1.0 g/L、reaction temperature 40°C、reaction time 2min. The morphology of the coating was observed by scanning electron microscopy (SEM). Coating composition and the microcosmic phase structure were characterized using energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD) respectively. Electrochemical test was used to study the coatings corrosion resistance. The results indicated that the composite chemical conversion coating is a crystal structure material that composites with Al、Mn、W、Ti et al., its surface appears as a accumulation of fibroid spherical particles, the crystallinity of conversion coating is better than uncoated sample obviously. The corrosion potential of the coating is improved to -0.440V, they were both prove the corrosion resistance has improved.


2010 ◽  
Vol 146-147 ◽  
pp. 208-211
Author(s):  
Yan Bo Wu ◽  
Si Si Zeng ◽  
Peng Sun

In this paper, we made two different chemical conversion coatings on aluminum alloy by TiOSO4 and Na2WO4. The morphology of the chemical conversion surface layers were observed by scanning electron microscopy (SEM). The microcosmic phase structures were characterized using X-ray diffraction (XRD). Electrochemical method was used to study the coatings corrosion resistance. The results indicated that the two conversion coatings were crystal structure material, the surface of coating were both show pothole structure. TiOSO4 coating have better corrosion resistance than Na2WO4 coating.


2010 ◽  
Vol 129-131 ◽  
pp. 467-471
Author(s):  
Yan Bo Wu ◽  
Si Si Zeng ◽  
Peng Sun

A chrome-free chemical conversion coating was prepared using stannous sulfate as the main salt. The morphology of the chemical conversion surface layer was observed by scanning electron microscopy (SEM). Coating composition and the microcosmic phase structure were characterized using energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD) respectively. Electrochemical method and dropping test were used to study the coatings corrosion resistance. The results indicated that the tin salts conversion coating is a crystal structure material that composites with Sn-F-O-Al et al., the surface appears as a accumulation of spherical particles, the crystallinity of conversion coating is better than uncoated sample obviously, the corrosion resistance has improved too.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 619
Author(s):  
Maciej Sowa ◽  
Marta Wala ◽  
Agata Blacha-Grzechnik ◽  
Artur Maciej ◽  
Alicja Kazek-Kęsik ◽  
...  

There are many methods for incorporating organic corrosion inhibitors to oxide coatings formed on aluminum alloys. However, typically they require relatively concentrated solutions of inhibitors, possibly generating a problematic waste and/or are time-/energy-consuming (elevated temperature is usually needed). The authors propose a three-step method of oxide layer formation on 6061-T651 aluminum alloy (AAs) via alternating current (AC) plasma electrolytic oxidation (PEO), impregnation with an 8-hydroxyquinoline (8-HQ) solution, and final sealing by an additional direct current (DC) polarization in the original PEO electrolyte. The obtained coatings were characterized by scanning electron microscopy, roughness tests, contact angle measurements, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Additionally, corrosion resistance was assessed by potentiodynamic polarization in a NaCl solution. Two types of the coating were formed (A—thicker, more porous at 440 mA cm−2; B—thinner, more compact at 220 mA cm−2) on the AA substrate. The 8-HQ impregnation was successful as evidenced by XPS. It increased the contact angle only for the B coatings and improved the corrosion resistance of both coating systems. Additional DC treatment destroyed superficially adsorbed 8-HQ. However, it served to block the coating pores (contact angle ≈ 80°) which improved the corrosion resistance of the coating systems. DC sealing alone did not bring about the same anti-corrosion properties as the combined 8-HQ impregnation and DC treatment which dispels the notion that the provision of the inhibitor was a needless step in the procedure. The proposed method of AA surface treatment suffered from unsatisfactory uniformity of the sealing for the thicker coatings, which needs to be amended in future efforts for optimization of the procedure.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 563 ◽  
Author(s):  
Kim ◽  
Kapun ◽  
Tiringer ◽  
Šekularac ◽  
Milošev

The morphology, composition and corrosion properties of commercial hexafluoro-zirconate trivalent chromium coatings (SurTec® 650) deposited on chemically cleaned aluminum alloy 3003 were studied. The coatings were deposited at room temperature using different concentrations of SurTec® 650 (10, 25 and 50 vol.%) and different conversion times (90 s, 11 min and 18 min). Scanning electron microscopy with energy dispersive X-ray spectrometry, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectrometry were employed to investigate the surface morphology, composition and thickness of uncoated and coated AA3003 samples. The morphology of the coating varied from uniform nodular to non-uniform and cracked; coatings were deposited at intermetallic particles and at the alloy matrix. The main constituents of conversion coatings were Zr(IV) and Cr(III) oxides; in addition to oxides, fluorides were also formed. The corrosion properties were investigated in two solutions: more aggressive sodium NaCl and less aggressive simulated acid rain. These commercial conversion coatings exhibited a good corrosion resistance but only after longer immersion in solution, i.e., 24 h. The results reveal an interesting behavior of zirconate-based coatings on aluminum-manganese alloy.


2015 ◽  
Vol 1090 ◽  
pp. 79-83
Author(s):  
Yan Hong He ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
Sheng Li Zhu ◽  
Zhao Yang Li ◽  
...  

In this paper, Pd ions doped cerium conversion coating (CeCC/Pd) was deposited on AA2219-T87 aluminum alloy by electroplating. The microstructure and composition of the coating were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). Corrosion behavior of AA2219-T87 aluminum alloy with the coating was investigated in 3.5wt.% NaCl solution at the room temperature. XRD and XPS results indicate the existence of cerium-oxide and palladium-oxide in the CeCC/Pd. Polarization curves show that the CeCC/Pd exhibits excellent corrosion resistance. The corrosion current density of the CeCC/Pd decreases by two orders of magnitude compared with the CeCC. The improvement of corrosion resistance would be attributed to the small grain size, good compactness and adhesive strength of the composite coatings.


2015 ◽  
Vol 62 (4) ◽  
pp. 253-258 ◽  
Author(s):  
Jie Sun ◽  
Gang Wang

Purpose – The purpose of this paper was to prepare the cerium-based conversion coating on AZ91D magnesium alloy, and its compositions, micro-morphology, corrosion resistance and the chemical valence state of the film elements were investigated. Design/methodology/approach – The methodology comprised preparation of coatings at different temperatures, which then were characterized using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, an electrochemistry workstation and by means of X-ray photoelectron spectroscopy. Findings – The conversion coating had a micro-cracked morphology. The conversion coatings were composed of MgO (or Mg-OH), CeO2 and Ce2O3. The best corrosion resistance of the cerium passivation film appeared when the treatment temperature was about 35°C. Originality/value – The corrosion current densities of conversion coatings were lower by one to two orders of magnitude than the corrosion current density of the blank sample. The rare earth passivation coating prepared under the best condition could reduce the corrosion current to 3.548 × 10−6 A/cm2.


2019 ◽  
Author(s):  
L.M. Zhang ◽  
S.D. Zhang ◽  
A.L. Ma ◽  
A.J. Umoh ◽  
H.X. Hu ◽  
...  

The effect of cerium content on the corrosion behavior of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution was investigated by cyclic polarization,Mott-Schottky and X-ray photoelectron spectroscopy techniques. Results indicated that the open circuit potential of Al-Co-Ce amorphous alloysdisplayed a decreased tendency with the increase in Ce content, and the amorphous alloy with 4 at.% Ce presented both the lowest passive currentdensity and donor density indicating the best corrosion resistance while adding excess Ce led to the reduced corrosion resistance of Al-Co-Ce alloys.Furthermore, it was found that a low Ce content is beneficial to the formation of a more protective passive film on Al-Co-Ce amorphous alloys, and thecorrosion inhibition reactions of Al-Co-Ce alloys in 0.6 M NaCl solution were changed with the increase in Ce content and the detailed reasons werediscussed.


2008 ◽  
Vol 368-372 ◽  
pp. 1287-1290
Author(s):  
Shi Guo Du ◽  
Jun Yan ◽  
Hai Ping Cui ◽  
Bin Wang

Molybdate conversion coatings were prepared on the anodized surfaces of aluminum alloy substrates, and the corrosion resistance in 3.5% NaCl solution was also investigated. The effects of the main parameters on the quality of the coatings were discussed. The morphology and chemical composition of the conversion coatings was examined by SEM and EDS. SEM observation showed that the coatings were composed of small sheet grains with tiny cracks between them. EDS analysis showed that the main element of the coatings was molybdenum. The results of polarization curve showed that the coatings effectively inhabited the pitting corrosion of aluminum alloy substrates. In the end the possible conversion mechanism was discussed.


Sign in / Sign up

Export Citation Format

Share Document