Thermodynamic probability analysis of the effects of Rb on the corrosion susceptibility of Cr-containing steels for nuclear materials canisters

CORROSION ◽  
10.5006/3917 ◽  
2021 ◽  
Author(s):  
Kang Wang ◽  
Charles Demarest ◽  
Mathew Asmussen ◽  
John Scully ◽  
Bi-Cheng Zhou

Rubidium (Rb) generated from the β-decay of Kr-85 has been theorized to be corrosive toward steel, specifically in the storage of Kr-85 nuclear waste streams. In the present study, the phase equilibria of RbxCryOz oxides with Rb in dry oxygen and water are investigated to understand a possible pathway to unusual deterioration of the corrosion resistance of canister steels in the presence of Rb. It was found that, in dry oxygen environments, the accumulation of Rb (more than 0.01 mol) can completely consume the Cr in 1 mol of AISI 4130 steel by forming -Rb2CrO4 and Rb3CrO4 and prevent the formation of protective Cr2O3 scale. In aqueous environments, RbxCryOz oxides are metastable species. In order to investigate their role, the probability of forming various oxides is invoked in order to avoid the all-or-nothing approach to oxide formation typical of E-pH diagram, which only predicts the most stable species dissolved, ionized or solid ionized. Thus, the probability of forming RbxCryOz was considered and reported herein. It was found RbxCryOz can possess a larger than 7% probability of forming over Cr2O3 in Rb rich case and 15% in Cr rich case, indicating that it is expected to find small amount of RbxCryOz in the thermodynamically formed reaction products. Even though Cr2O3 is more stable than RbxCryOz oxides, the protective Cr2O3 scale is likely to have some vulnerability to Rb, leading to one possible route for the decline in the corrosion resistance of steel canisters in aqueous environments. Therefore, from a thermodynamic perspective, the current study supports the hypothesis that Rb can thermodynamically react with Cr in steels and can lead to formation of RbxCryOz at certain potentials and pH levels, showing the Rb influence of steel corrosion cannot be discounted. The paper considers experimental mixed potential and pH levels observed and relationship to thermodynamic probability. From this relative corrosion resistance can be assessed in a preliminary way in aqueous environments.

Alloy Digest ◽  
2021 ◽  
Vol 70 (7) ◽  

Abstract Nippon Yakin NAS 800 is an austenitic nickel-iron-chromium alloy that exhibits high strength and excellent resistance to oxidation and carburization at high temperatures. It also offers excellent corrosion resistance in many aqueous environments. It is normally employed in service temperatures up to and including 600 °C (1100 °F). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-773. Producer or source: Nippon Yakin Kogyo Co., Ltd.


Metallurgist ◽  
2018 ◽  
Vol 61 (9-10) ◽  
pp. 770-776
Author(s):  
I. G. Rodionova ◽  
M. V. Feoktistova ◽  
O. N. Baklanova ◽  
A. V. Amezhnov ◽  
D. L. D’yakonov

2019 ◽  
Vol 121 ◽  
pp. 01011
Author(s):  
Olga Parmenova ◽  
Svetlana Mushnikova ◽  
Vitaliy Bobyr ◽  
Evgeniy Samodelkin

This paper presents the results of comparative corrosion resistance studies of stainless steels manufactured by selective laser melting (SLM) in the initial state with subsequent heat treatment and machining. Pitting corrosion tests are carried out, according to ASTM G48 method A in 10% FeCl3·6H2O solution at elevated temperature and exposure time for 5h. The studies were performed on the AISI 321 and AISI 316L stainless steels manufactured by SLM. It was obtained that laser scanning speed decrease led to density rise by other SLM parameters being equal. Porosity affected to the stainless steel corrosion behaviour significant. Metal density decrease resulted to corrosion rate rise. Microstructure examination showed that pitting corrosion development depended on surface steel condition.


Author(s):  
V F Novikov ◽  
R A Sokolov ◽  
D F Neradovskiy ◽  
K R Muratov

2011 ◽  
Vol 58 ◽  
pp. 628-646 ◽  
Author(s):  
D.A. Koleva ◽  
N. Boshkov ◽  
K. van Breugel ◽  
J.H.W. de Wit

Sign in / Sign up

Export Citation Format

Share Document