Axial Bearing Capacity of Composite-Sectioned Square Concrete-Filled Steel Tube (Css-Cfst) Columns Stub Reinforced by Circular Steel Tube

Author(s):  
Guest Editor Manhui Su
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Pengfei Li ◽  
Tao Zhang ◽  
Chengzhi Wang

The behavior of concrete-filled steel tube (CFST) columns subjected to axial compression was experimentally investigated in this paper. Two kinds of columns, including CFST columns with foundation and columns without foundation, were tested. Columns of pure concrete and concrete with reinforcing bars as well as two steel tube thicknesses were considered. The experimental results showed that the CFST column with reinforcing bars has a higher bearing capacity, more effective plastic behavior, and greater toughness, and the elastoplastic boundary point occurs when the load is approximately 0.4–0.5 times of the ultimate bearing capacity. The change of rock-socketed depth and the presence of steel tube will affect the ultimate bearing capacity of rock-socketed pile. The bearing capacities of the rock-socketed CFST columns are lower than those of rock-socketed columns without a steel tube under a vertical load; besides, the greater the rock-socketed depth, the greater the bearing capacity of the rock-socketed piles. In addition, a numerical comparison between the ultimate load and the theoretical value calculated from the relevant specifications shows that the ultimate load is generally considerably greater than the theoretical calculation results.


2018 ◽  
Vol 8 (10) ◽  
pp. 1894 ◽  
Author(s):  
Lidong Zhao ◽  
Wanlin Cao ◽  
Huazhen Guo ◽  
Yang Zhao ◽  
Yu Song ◽  
...  

To investigate the effect of constructional measures (including horizontal and vertical stiffeners, rebar cages, embedded steel tubes, and cavity welded steel plates) under high axial load ratios on the seismic performance of concrete-filled steel tubular (CFST) columns, quasi-static tests for six large-scale CFST columns with various constructional measures are performed. All specimens are subjected to identical axial forces. The failure mode, hysteresis characteristics, bearing capacity, stiffness degradation, ductility, and energy dissipation of specimens are analyzed. The study shows that the horizontal stiffener delays the occurrence and severity of column base buckling, the vertical stiffener improves the bending resistance capacity and initial stiffness of the member, the rebar cage improves the ductility, and the embedded circular steel tube significantly improves the member’s bearing capacity, ductility, and energy dissipation. When an internal circular steel tube and cavity welded steel plate are applied in tandem, the section steel ratio increases by 4.42% and the bearing capacity improves by 42.72%. A finite element model is created to verify test results, and simulation results match the test results well.


2022 ◽  
pp. 136943322110542
Author(s):  
XiuShu Qu ◽  
Yuxiang Deng ◽  
GuoJun Sun ◽  
Qingwen Liu ◽  
Qi Liu

The use of a self-compacting lower expansion concrete in a concrete-filled steel tube (CFST) structure not only promotes the quality of concrete pouring but also improves the bond behaviour between the steel and the concrete. In combination with the actual stress state of the columns in the engineering structure, it is necessary to study the eccentric compression behaviour of the column. In this study, experimental studies involving both uniaxial and biaxial bending tests of rectangular self-compacting lower expansion CFST columns were carried out. The variation laws of the load–displacement curves, the lateral deflection curves and the stress–strain curves during the loading phase were analysed. Furthermore, the failure modes and the mechanical properties of the specimens under eccentric compression loads were investigated. Subsequently, the numerical models of CFST columns with self-compacting lower expansion concrete were considered and established. In order to verify the rationality of the finite element modelling, the numerical calculation results were compared with test results. Then, a parametric analysis of the compression and the bending bearing capacities of each column was carried out by changing the eccentricity of the load, and the N–M curves or N-Mx-My surfaces describing the ultimate bearing capacity of the column were obtained. Finally, by the parametric finite element analysis of the rectangular CFST columns regarding to the bearing capacity under the same eccentricity, a conclusion was obtained: when the expansion agent content γ of a specimen increased from 0% to 10%, the bearing capacity of the columns increases significantly, but when continue increasing the expansive agent content, the expansion agent content has little effect on the compression–bending bearing capacity.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yiyan Lu ◽  
Tao Zhu ◽  
Shan Li ◽  
Weijie Li ◽  
Na Li

This paper investigates the axial behavior of slender reinforced concrete (RC) columns strengthened with concrete filled steel tube (CFST) jacketing technique. It is realized by pouring self-compacting concrete (SCC) into the gap between inner original slender RC columns and outer steel tubes. Nine specimens were prepared and tested to failure under axial compression: a control specimen without strengthening and eight specimens with heights ranging between 1240 and 2140 mm strengthened with CFST jacketing. Experimental variables included four different length-to-diameter (L/D) ratios, three different diameter-to-thickness (D/t) ratios, and three different SCC strengths. The experimental results showed that the outer steel tube provided confinement to the SCC and original slender RC columns and thus effectively improved the behavior of slender RC columns. The failure mode of slender RC columns was changed from brittle failure (concrete peel-off) into ductile failure (global bending) after strengthening. And, the load-bearing capacity, material utilization, and ductility of slender RC columns were significantly enhanced. The strengthening effect of CFST jacketing decreased with the increase of L/D ratio and D/t ratio but showed little variation with higher SCC strength. An existing expression of load-bearing capacity for traditional CFST columns was extended to propose a formula for the load-bearing capacity of CFST jacketed columns, and the predictions showed good agreement with the experimental results.


2018 ◽  
Vol 8 (9) ◽  
pp. 1602 ◽  
Author(s):  
Zhao Yang ◽  
Chengxiang Xu

Local buckling in steel tubes was observed to be capable of reducing the ultimate loads of thin-walled concrete-filled steel-tube (CFST) columns under axial compression. To strengthen the steel tubes, steel bars were proposed in this paper to be used as stiffeners fixed onto the tubes. Static-loading tests were conducted to study the compression behavior of square thin-walled CFST columns with steel bar stiffeners placed inside or outside the tube. The effect and feasibility of steel bar stiffeners were studied through the analysis of failure mode, load–displacement relationship, ultimate load, ductility, and local buckling. Different setting methods of steel bars were compared as well. The results showed that steel-bar stiffeners proposed in this paper can be effective in delaying local buckling as well as increasing the bearing capacity of the columns, but will decrease the ductility of the columns. In order to obtain a higher bearing capacity of columns, steel bars with low stiffness should be placed inside and steel bars with high stiffness should be placed outside of the steel tubes. The study is helpful in providing reference to the popularization and application of this new structural measure to avoid or delay the local buckling of thin-walled CFST columns.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
He Zhang ◽  
Kai Wu ◽  
Chao Xu ◽  
Lijian Ren ◽  
Feng Chen

Two columns of thin-walled concrete-filled steel tubes (CFSTs), in which tube seams are connected by self-tapping screws, are axial compression tested and FEM simulated; the influence of local buckling on the column compression bearing capacity is discussed. Failure modes of square thin-wall CFST columns are, first, steel tube plate buckling and then the collapse of steel and concrete in some corner edge areas. Interaction between concrete and steel makes the column continue to withstand higher forces after buckling appears. A large deflection analysis for tube elastic buckling reflects that equivalent uniform stress of the steel plate in the buckling area can reach yield stress and that steel can supply enough designing stress. Aiming at failure modes of square thin-walled CFST columns, a B-type section is proposed as an improvement scheme. Comparing the analysis results, the B-type section can address both the problems of corner collapse and steel plate buckling. This new type section can better make full use of the stress of the concrete material and the steel material; this type section can also increase the compression bearing capacity of the column.


2020 ◽  
Vol 23 (10) ◽  
pp. 2188-2203
Author(s):  
Zhao Nannan ◽  
Wang Yaohong ◽  
Han qing ◽  
Su Hao

Composite shear walls are widely used in high-rise buildings because of their high bearing capacity. To improve the bearing capacity of ordinary shear walls, restraining elements are usually installed at both boundaries or within the wall body. In this article, two different restraining elements, namely, a rectangular steel tube and a column-type reinforcement (the whole wall body was restrained by segmented stirrups and tied by diagonal bars), were applied to the boundary frame and wall body of the shear wall either jointly or separately. A new type of steel-concrete composite shear wall, referred to as a composite shear wall incorporating a concrete-filled steel tube boundary and column-type reinforced wall, was proposed. In addition, three specimens with different restraining elements, namely, a column-type reinforced shear wall, a concrete-filled steel tube boundary shear wall and an ordinary reinforced concrete shear wall, were presented for comparison. The influences of the two different restraining elements on the seismic performance and bearing capacity of the shear walls were analyzed from four perspectives of failure mode, hysteresis behavior, stiffness and residual deformation, and the equivalent lateral pressures of the two restraining elements were calculated. Based on the plane-section assumption, expressions for the crack, yield, peak and ultimate bearing capacities were derived, and the effects of the two restraining elements on the peak and ultimate bearing capacities were considered. The results show that these two restraining elements significantly improved the bearing capacity of the shear wall specimens, and the concrete-filled steel tube restraining element was more effective than the column-type reinforced restraining element. Finally, the calculated values of the bearing capacity of the four different restraining elements of the shear wall specimens proposed in this article were in good agreement with the experimental values.


2019 ◽  
Vol 23 (5) ◽  
pp. 2254-2262 ◽  
Author(s):  
Kaizhong Xie ◽  
Hongwei Wang ◽  
Jinhao Pang ◽  
Jianxi Zhou

2019 ◽  
Vol 23 (6) ◽  
pp. 1074-1086 ◽  
Author(s):  
Tao Zhu ◽  
Hongjun Liang ◽  
Yiyan Lu ◽  
Weijie Li ◽  
Hong Zhang

This article investigates the behaviour of slender concrete-filled steel tube square columns strengthened by concrete-filled steel tube jacketing. The columns were realised by placing a square outer steel tube around the original slender concrete-filled steel tube column and pouring strengthening concrete into the gap between the inner and outer steel tubes. Three concrete-filled steel tube square columns and seven retrofitted columns ranging from 1200 to 2000 mm were tested to failure under axial compression. The experimental parameters included three length-to-width ( L/ B1) ratios, three width-to-thickness ( B1/ t1) ratios and three strengths of concrete jacket (C50-grade, C60-grade and C70-grade). Experimentally, the retrofitted columns failed in a similar manner to traditional slender concrete-filled steel tube columns. After strengthening, the retrofitted columns benefitted greatly from the component materials, with their load-bearing capacity and ductility notably enhanced. These enhancements were mainly brought about by sectional enlargement and good confinement of concrete. A finite element model was developed using ABAQUS to better understand the axial behaviour of the retrofitted specimens. A parametric study was conducted, with parameters including the length of the column, thickness of the outer steel tube, strength of the concrete jacket, yield strength of the outer steel tube, thickness of the inner steel tube and strength of the inner concrete. Furthermore, the finite element model was adopted to study the behaviour of rust-damaged and post-fire slender concrete-filled steel tube square columns strengthened by square concrete-filled steel tube jacketing. A modified formula was proposed to predict the load-bearing capacity of retrofitted specimens, and the numerical results agreed well with the experiments and the finite element results of undamaged, rust-damaged and post-fire specimens. It could be used as a reference for practical application.


2018 ◽  
Vol 878 ◽  
pp. 126-131 ◽  
Author(s):  
Anatoly L. Krishan ◽  
Elvira P. Chernyshova ◽  
Rustam R. Sabirov

New approach to creating deformation charts for concrete core and steel shell of round CFST columns is offered. For creating such charts the power resistance of short central the compressed concrete filled steel tube element is considered. At the same time two major factors are considered. First, the steel shell and the concrete core function under conditions of complex tension. Secondly, at step-by-step strengthening of axial deformations the side pressure upon concrete core and steel shell constantly changes. As a result coordinates of parametrical points of deformation charts for concrete and steel change. Such approach allows describing the real intense deformed condition of concrete filled steel tube columns more precisely.


Sign in / Sign up

Export Citation Format

Share Document