scholarly journals A Precise Algorithm for Computing Sun Position on a Satellite

Author(s):  
Tao Zheng ◽  
Fei Zheng ◽  
Xi Rui ◽  
Xiang Ji

To meet the high precision sun tracking needs of a space deployable membrane solar concentrator and other equipment, an existing algorithm for accurately computing the sun position is improved. Firstly, compared with other theories, the VSOP (variation seculaires des orbits planetaires) 87 theory is selected and adopted to obtain the sun position in the second equatorial coordinate system. Comparing the results with data of the astronomical almanac from 2015, it is found that the deviation of the apparent right ascension does not exceed 0.17 arc seconds, while that of the apparent declination does not exceed 1.2 arc seconds. Then, to eliminate the difference in the direction of the sun position with respect to the satellite caused by the size of the satellite’s orbit, a translation transform is introduced in the proposed algorithm. Finally, the proposed algorithm is applied to the orbit of the satellite designated by SJ-4 (shijian-4). Under the condition that both of the existing and improved algorithms adopt the VSOP87 theory to compute sun position in the second equatorial coordinate system, the maximum deviation of the azimuth angle on the SJ-4 is 35.19 arc seconds and the one of pitch angle is 19.93 arc seconds, when the deviation is computed by subtracting the results given by both algorithms. In summary, the proposed algorithm is more accurate than the existing one.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yan Wang ◽  
Zhanfeng Li ◽  
Guanyu Lin ◽  
Yu Huang

In order to grasp the timing of sun calibration in advance, this paper introduces a high-precision method to predict the solar angle by using the current broadcast time and orbital instantaneous root of the satellite platform. By calculating the sun’s apparent right ascension and apparent declination, the conversion matrix from the geocentric inertial coordinate system to the orbital coordinate system, and the satellite attitude correction matrix, the sun vector in the satellite body coordinate system is obtained. This method is used to predict the sun angle of a sun synchronous orbit in the satellite coordinate system, and the prediction results are compared with the STK simulation results. The results show that the sun angle prediction error of this method is less than ±0.003°. It can meet the requirements of on-orbit solar calibration. The main error sources in the prediction method are analysed.


1872 ◽  
Vol 20 (130-138) ◽  
pp. 35-39 ◽  

A discussion has taken place on the Continent, conducted partly in the 'Astronomische Nachrichten,’ partly in independent pamphlets, on the change of direction which a ray of light will receive (as inferred from the Undulatory Theory of Light) when it traverses a refracting medium which has a motion of translation. The subject to which attention is particularly called is the effect that will be produced on the apparent amount of that angular displacement of a star or planet which is caused by the Earth’s motion of translation, and is known as the Aberration of Light. It has been conceived that there may be a difference in the amounts of this displacement, as seen with different telescopes, depending on the difference in the thicknesses of their object-glasses. The most important of the papers containing this discussion are:—that of Professor Klinkerfues, contained in a pamphlet published at Leipzig in 1867, August; and those of M. Hoek, one published 1867, October, in No. 1669 of the 'Astronomische Nachrichten,’ and the other published in 1869 in a communication to the Netherlands Royal Academy of Sciences. Professor Klinkerfues maintained that, as a necessary result of the Undulatory Theory, the amount of Aberration would be increased, in accordance with a formula which he has given; and he supported it by the following experiment:— In the telescope of a transit-instrument, whose focal length was about 18 inches, was inserted a column of water 8 inches in length, carried in a tube whose ends were closed with glass plates; and with this instrument he observed the transit of the Sun, and the transits of certain stars whose north-polar distances were nearly the same as that of the Sun, and which passed the meridian nearly at midnight. In these relative positions, the difference between the Apparent Right Ascension of the Sun and those of the stars is affected by double the coefficient of Aberration; and the merely astronomical circumstances are extremely favourable for the accurate testing of the theory. Professor Klinkerfues had computed that the effect of the 8-inch column of water and of a prism in the interior of the telescope would be to increase the coefficient of Aberration by eight seconds of arc. The observation appeared to show that the Aberration was really increased by 7'' 1. It does not appear that this observation was repeated.


1772 ◽  
Vol 62 ◽  
pp. 46-53 ◽  

Micrometers, as first contrived, being only adapted to the measuring small angles, as the diameters of the Sun and Moon, or other planets, and taking the distance of such objects as appeared within the aperture of the telescope at the same time, were not of so general use as those which are contrived not only to answer the ends that the first inventers aimed at, but likewise, to take the difference of right ascension and declination of such objects as are farther asunder than the telescope will take in at once, but which pass through the aperture of it at different times.


1859 ◽  
Vol 9 ◽  
pp. 227-229

In this paper the author stated that the Hadleian theory of winds, which is now the one generally recognized, is not supported by the evidence of facts, but rests on assumptions founded on imaginary effects of the partial expansion of the atmospheric gases by heat. It is assumed in that theory, that when the tropical heat expands these gases, they rise and flow away laterally in the higher regions towards the poles, from which they return to the tropics in the lower regions. But it was contended by the writer of the paper, that such heating of the gases merely expands them, without making them rise and overflow to other parts. The theory of Halley, once generally adopted, represented that the air was greatly heated in the particular part where the sun was nearly vertical, which made the air rise in that part alone, admitting cooler air to flow into the place of that which had ascended, and produced an influx of cool air below, from all parts around, to the heated part, and an overflow above from it. But in time experience showed that this hypothesis was not in accordance with facts, and it was abandoned. The theory of Hadley, which has been since adopted, substitutes the whole tropical belt, for the heated locality of Halley, which travelled with the sun in his daily course; but the supposed rise of air in the tropical belt, with an overflow above and an influx below, was asserted to be equally un­supported by experience, and, being unproved, may be fallacious. The rise of heated air in a chimney, sometimes pointed at as an illus­tration, was shown to be not analogous to that which takes place when the sun heats the air unequally in different latitudes; if it were, the theory of Halley would be true, and cool air would flow from all parts around to the greatly heated locality, just as cool air passes to a fire, and, when heated, up a chimney. It was then shown that it is gravitation which establishes an equilibrium of pressure in the atmosphere, and that direct solar heating of the surface of the earth and the air near to it, does not destroy that equilibrium. The sun by heating the gases merely expands them, in proportion to the increase of temperature in the part near the surface, and the gases over every portion of the hemisphere that is exposed to the action of the sun is proportionally heated, expanded and raised without any overflow of air taking place; leaving the equilibrium of pressure un­disturbed by such heating. The solar heat merely raises the air that is near the surface, over the most heated latitudes, a little higher than the adjoining less heated, the difference in the rise in the various latitudes, from the polar to the tropical regions, being successively small; and as there is no alteration produced in weight of any vertical column of the atmosphere, in any latitude, there is neither overflow of air above, nor disturbance of the equilibrium of pressure. The great disturbances that take place in the atmosphere were then maintained to be caused by the heat which is conveyed, from the surface of the globe, in vapour to different parts of the atmosphere at various heights, and liberated in those parts when the vapour is condensed into liquid. This liberation of heat creates ascending cur­rents in the parts locally affected, when horizontal winds, produced by gravitation, blow over the surface towards the ascending currents to re-establish the disturbed equilibrium. This process, by heating the air in the middle regions, was asserted to have been proved to be the cause, not only of the great trade-winds and the monsoons, but of the storms and local winds over the different regions of the globe.


2019 ◽  
Vol 491 (1) ◽  
pp. 1335-1347 ◽  
Author(s):  
G P Rosotti ◽  
M Benisty ◽  
A Juhász ◽  
R Teague ◽  
C Clarke ◽  
...  

ABSTRACT Scattered light high-resolution imaging of the protoplanetary disc orbiting HD100453 shows two symmetric spiral arms, possibly launched by an external stellar companion. In this paper, we present new, sensitive high-resolution (∼30 mas) Band 7 ALMA observations of this source. This is the first source where we find counterparts in the sub-mm continuum to both scattered light spirals. The CO J = 3–2 emission line also shows two spiral arms; in this case, they can be traced over a more extended radial range, indicating that the southern spiral arm connects to the companion position. This is clear evidence that the companion is responsible for launching the spirals. The pitch angle of the submillimetre continuum spirals (∼6°) is lower than the one in scattered light (∼16°). We show that hydrodynamical simulations of binary–disc interaction can account for the difference in pitch angle only if one takes into account that the mid-plane is colder than the upper layers of the disc, as expected for the case of externally irradiated discs.


Author(s):  
Mokhtar Mohammed ◽  
Taha Janan Mourad

Solar distillation is one of the oldest and simplest technologies for desalination of salty water using renewable energy, namely solar energy, and the main problem of solar distillers is the low freshwater yield in contrast to the amount of energy input from the sun. To overcome the problem, this study develops three solar desalination units by using solar concentrators or/and internal reflectors, and compares the performance of three developed systems with the one of a conventional solar distiller under the climatic conditions of the Rabat region of Morocco. The three systems are: the solar distiller with a solar concentrator, the solar distiller with internal reflectors, and the solar distiller with a solar concentrator and internal reflectors. The energy balance equations of the systems are numerically resolved to utilize MATLAB software. The findings indicate that the utilization of the internal reflectors, the solar concentrator, and the solar concentrator and internal reflectors give better performance compared to the conventional solar distiller.


1978 ◽  
Vol 48 ◽  
pp. 433-435
Author(s):  
F. Schmeidler

Meridian observations of fundamental stars were made at Breslau Observatory in 1922 to 1925. The observations in right ascension were made by W.Rabe with the 6-inch transit instrument, whereas the declinations were observed by A.Wilkens with the vertical circle. In both coordinates, observations of the Sun were also made.


1975 ◽  
Vol 34 (02) ◽  
pp. 426-444 ◽  
Author(s):  
J Kahan ◽  
I Nohén

SummaryIn 4 collaborative trials, involving a varying number of hospital laboratories in the Stockholm area, the coagulation activity of different test materials was estimated with the one-stage prothrombin tests routinely used in the laboratories, viz. Normotest, Simplastin-A and Thrombotest. The test materials included different batches of a lyophilized reference plasma, deep-frozen specimens of diluted and undiluted normal plasmas, and fresh and deep-frozen specimens from patients on long-term oral anticoagulant therapy.Although a close relationship was found between different methods, Simplastin-A gave consistently lower values than Normotest, the difference being proportional to the estimated activity. The discrepancy was of about the same magnitude on all the test materials, and was probably due to a divergence between the manufacturers’ procedures used to set “normal percentage activity”, as well as to a varying ratio of measured activity to plasma concentration. The extent of discrepancy may vary with the batch-to-batch variation of thromboplastin reagents.The close agreement between results obtained on different test materials suggests that the investigated reference plasma could be used to calibrate the examined thromboplastin reagents, and to compare the degree of hypocoagulability estimated by the examined PIVKA-insensitive thromboplastin reagents.The assigned coagulation activity of different batches of the reference plasma agreed closely with experimentally obtained values. The stability of supplied batches was satisfactory as judged from the reproducibility of repeated measurements. The variability of test procedures was approximately the same on different test materials.


2018 ◽  
Vol 3 (2) ◽  
pp. 207-216 ◽  
Author(s):  
David Fisher ◽  
Lionel Sims

Claims first made over half a century ago that certain prehistoric monuments utilised high-precision alignments on the horizon risings and settings of the Sun and the Moon have recently resurfaced. While archaeoastronomy early on retreated from these claims, as a way to preserve the discipline in an academic boundary dispute, it did so without a rigorous examination of Thom’s concept of a “lunar standstill”. Gough’s uncritical resurrection of Thom’s usage of the term provides a long-overdue opportunity for the discipline to correct this slippage. Gough (2013), in keeping with Thom (1971), claims that certain standing stones and short stone rows point to distant horizon features which allow high-precision alignments on the risings and settings of the Sun and the Moon dating from about 1700 BC. To assist archaeoastronomy in breaking out of its interpretive rut and from “going round in circles” (Ruggles 2011), this paper evaluates the validity of this claim. Through computer modelling, the celestial mechanics of horizon alignments are here explored in their landscape context with a view to testing the very possibility of high-precision alignments to the lunar extremes. It is found that, due to the motion of the Moon on the horizon, only low-precision alignments are feasible, which would seem to indicate that the properties of lunar standstills could not have included high-precision markers for prehistoric megalith builders.


1975 ◽  
Vol 14 (3) ◽  
pp. 370-375
Author(s):  
M. A. Akhtar

I am grateful to Abe, Fry, Min, Vongvipanond, and Yu (hereafter re¬ferred to as AFMVY) [1] for obliging me to reconsider my article [2] on the demand for money in Pakistan. Upon careful examination, I find that the AFMVY results are, in parts, misleading and that, on the whole, they add very little to those provided in my study. Nevertheless, the present exercise as well as the one by AFMVY is useful in that it furnishes us with an opportunity to view some of the fundamental problems involved in an empi¬rical analysis of the demand for money function in Pakistan. Based on their elaborate critique, AFMVY reformulate the two hypo¬theses—the substitution hypothesis and the complementarity hypothesis— underlying my study and provide us with some alternative estimates of the demand for money in Pakistan. Briefly their results, like those in my study, indicate that income and interest rates are important in deter¬mining the demand for money. However, unlike my results, they also suggest that the price variable is a highly significant determinant of the money demand function. Furthermore, while I found only a weak support for the complementarity between money demand and physical capital, the results obtained by AFMVY appear to yield a strong support for that rela¬tionship.1 The difference in results is only a natural consequence of alter¬native specifications of the theory and, therefore, I propose to devote most of this reply to the criticisms raised by AFMVY and the resulting reformulation of the two mypotheses.


Sign in / Sign up

Export Citation Format

Share Document