scholarly journals EXPERIMENTAL STUDY OF WATER PRESSURE RESISTANCE OF ADHESIVE WATERPROOF SHEETING AT CRACK OPENING OR JOINT EXPANSION REGION

2016 ◽  
Vol 31 (0) ◽  
pp. 161
Author(s):  
Atsuhisa OGAWA ◽  
Kazumasa KUSUDO ◽  
Ryo NISHIZATO ◽  
Naoyuki YAGUCHI ◽  
Ken-ichi KOJIMA ◽  
...  
2014 ◽  
Vol 56 (2) ◽  
pp. 1450008-1-1450008-21 ◽  
Author(s):  
Tomoaki Nakamura ◽  
Yuta Nezasa ◽  
Yong-Hwan Cho ◽  
Ryo Ishihara ◽  
Norimi Mizutani

2019 ◽  
Vol 83 (sp1) ◽  
pp. 116
Author(s):  
Hanling Wu ◽  
Yanjun Liu ◽  
Gang Xue ◽  
Fengxiang Guo ◽  
Zhitong Li ◽  
...  

Author(s):  
Manuela Kanitz ◽  
Juergen Grabe

Floating offshore structures used to generate wind energy are founded on submerged foundations such as anchor plates. Their extraction resistance is of major importance during and at the end of the lifetime cycle of these offshore structures. During their lifetime cycle, the foundation is suspended to complex loading conditions due to waves, tidal currents and wind loads. To guarantee a stable structure, the extraction resistance of the anchor plates has to be known. At the end of the lifetime cycle of the offshore structures, the extraction resistance is mainly influencing the removal of the anchor plates. This resistance is a lot higher than the sum of its self-weight and hydrostatic and earth pressure acting on the structure. With initiation of a motion of the anchor plate, the volume underneath this structure is increased leading to negative pore water pressure until inflowing pore water is filling the newly created volume. In order to investigate this effect, an extensive experimental study at model scale with a displacement-driven extraction is performed. Pore pressure measurements are carried out at various locations in the soil body and underneath the plate. The soil movement is tracked with a high-speed camera to investigate the shear band formation with the particle image velocimetry method (PIV). The experiments will be conducted considering different packing densities of the soil body and at different extraction velocities to investigate their effect on the extraction resistance of anchor plates.


2012 ◽  
Vol 594-597 ◽  
pp. 2073-2076
Author(s):  
Zhong Fei Ma ◽  
Li Chen ◽  
Fu Qin Wang

In order to improve the cooling effect and practical applicability of falling temperature technique on high-temperature workplaces, the aeration and cooling principle of the high pressure water rotational jetting ventilation were analysed, and the experimental study was carried out. The results show that water pressure and cooling rate are an approximation of parabolic growth relationship, different structure of jet tube and temperature difference on water and gas also have an obvious effect on the cooling amplitude and air quantity. the guide vanes installed may improve effect of ventilation and cooling the capacity on high pressure water rotational jetting.


2020 ◽  
Vol 44 (3) ◽  
pp. 203-209
Author(s):  
Yeon-Jae Jeong ◽  
Jong-Min Choi ◽  
Myung-Sung Kim ◽  
Yong-Tai Kim ◽  
Won-Seok Heo ◽  
...  

Author(s):  
D. Stefanescu ◽  
J. Marrow ◽  
M. Preuss ◽  
A. Sherry

Validation of models for short crack behavior requires accurate measurement of crack opening displacement and crack tip strain fields. Development of reliable measurement procedures, using new techniques such as Image Correlation (IC), requires specimens containing cracks with a well defined geometry. In this paper, results of an experimental study concerning controlled initiation of short fatigue cracks at positive R-ratio in laboratory specimens made from 316L stainless steel are presented. Experimental techniques, including hardness testing and X-ray diffraction were employed in order to investigate the effect of surface preparation on the surface mechanical properties and residual stresses. Crack nucleation is difficult in smooth specimens of 316L austenitic stainless steel at positive R-ratio due to the high fatigue limit and low tensile strength. Specimens with a thin ligament were therefore developed to enable nucleation of a single short fatigue crack. An experimental study of the crack growth aspect ratio evolution was then carried out using a beach marking technique. The technique described in this paper enables single short fatigue cracks of well defined geometry to be nucleated under tensile cyclic loading. Stress corrosion cracks can be developed using the same specimen geometry. Miniature tensile specimens can then be extracted to perform in-situ measurements of the crack opening displacement and crack tip strain field by Image Correlation from Scanning Electron Microscopy observations.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Meng Chen ◽  
Zhifang Zhou ◽  
Brent Sleep ◽  
Xingxing Kuang ◽  
Li Mingwei ◽  
...  

The process of water infiltration into initially dry sand was studied in horizontal sand columns under various airtight conditions. To investigate the interrelations among water inflow behavior, air pressure, air confinement effect, and vent effectiveness in unsaturated porous media experiencing dynamic infiltration, a total of five dynamic infiltration experiments with fixed inlet water pressure were performed with different air vents open or closed along the column length. Visualizations of the infiltration process were accompanied by measurements of water saturation, air pressure, and accumulated water inflow. In a column system with an open end, the absence of air pressure buildup reveals that the vent at the column end can significantly reduce the internal air pressure effects during infiltration, and the air phase can be ignored for this case. However, in columns with a tight end, the coupled air and water flow processes can be divided into two completely different periods. Before the water front passed by the most distant open vent, the internal air pressure effects on retarding dynamic infiltration are negligible, similar to the open end case. After this period, the open vents can certainly influence the inflow behavior by functioning as air outlets while they cannot equilibrate pore air pressure with the atmospheric pressure. The remaining air ahead of the front will be gradually confined and compressed, and the significant increase in air pressure highlights the great role of air pressure buildup in reducing the water infiltration rate. The closer the last open vent was to the water inlet, the higher was the increase in air pressure and the greater was the delaying effect on water infiltration. This work may extend the experimental study of water infiltration into the unsaturated soils with different airtight conditions and provide experimental evidence on these coupled mechanisms among the water and air phases in soils.


Sign in / Sign up

Export Citation Format

Share Document