Effects of tibial and humerus intraosseous administration of epinephrine in a cardiac arrest swine model

2016 ◽  
Vol 11 (4) ◽  
pp. 243-251 ◽  
Author(s):  
Denise Beaumont, MSN, CRNA ◽  
Asal Baragchizadeh, MS, PhD Candidate ◽  
Charles Johnson, MA ◽  
Don Johnson, PhD

Objective: Compare maximum concentration (Cmax), time to maximum concentration (Tmax), mean serum concentration of epinephrine, return of spontaneous circulation (ROSC), time to ROSC, and odds of survival relative to epinephrine administration by humerus intraosseous (HIO), tibial intraosseous (TIO), and intravenous (IV) routes in a swine cardiac arrest model.Design: Prospective, between subjects, randomized experimental design.Setting: TriService Research Facility.Subjects: Yorkshire-cross swine (n = 28).Intervention: Swine were anesthetized and placed into cardiac arrest. After 2 minutes, cardiopulmonary resuscitation was initiated. After an additional 2 minutes, a dose of 1 mg of epinephrine was administered by HIO, TIO, or the IV routes. Blood samples were collected over 4 minutes and analyzed by high-performance liquid chromatography tandem mass spectrometry.Main Outcome Measurements: ROSC, time to ROSC, Cmax, Tmax, mean concentrations over time, and odds ratio.Results: There was no significant difference in rate of the ROSC among the TIO, HIO, and IV groups (p 0.05). There were significant differences in Cmax: the HIO group was significantly higher than the TIO group (p = 0.007), but no significant difference between the IV and HIO (p = 0.33) or the IV and TIO group (p = 0.060). The Tmax was significantly shorter for both the IV and HIO versus the TIO group (p 0.05), but no difference between IV and HIO (p = 0.328). The odds of survival were higher in the HIO group compared to all other groups.Conclusion: The TIO and HIO provide rapid and reliable access to administer life-saving medications during cardiac arrest.

2016 ◽  
Vol 11 (4) ◽  
pp. 261-269 ◽  
Author(s):  
Monica M. Holloway, BSN ◽  
Shannan L. Jurina, MSN ◽  
Joshua D. Orszag, BSN ◽  
George R. Bragdon, MS ◽  
Rustin D. Green, BSN, CCRN ◽  
...  

Objective: To compare the effects of amiodarone administration by humerus intraosseous (HIO) and intravenous (IV) routes on return of spontaneous circulation (ROSC), time to maximum concentration (Tmax), maximum plasma drug concentration (Cmax), time to ROSC, and mean concentrations over time in a hypovolemic cardiac arrest model.Design: Prospective, between subjects, randomized experimental design.Setting: TriService Research Facility.Subjects: Yorkshire-cross swine (n = 28).Intervention: Swine were anesthetized and placed into cardiac arrest. After 2 minutes, cardiopulmonary resuscitation was initiated. After an additional 2 minutes, amiodarone 300 mg was administered via the HIO or the IV route. Blood samples were collected over 5 minutes. The samples were analyzed using high-performance liquid chromatography tandem mass spectrometry.Main Outcome Measurements: ROSC, Tmax, Cmax, time to ROSC, and mean concentrations over time.Results: There was no difference in ROSC between the HIO and IV groups; each had five achieve ROSC and two that did not (p = 1). There was no difference in Tmax (p = 0.501) or in Cmax between HIO and IV groups (p = 0.232). Means ± standard deviations in seconds were 94.3 ± 78.3 compared to 115.7 ± 87.3 in the IV versus HIO groups, respectively. The mean ± standard deviation in nanograms per milliliter for the HIO was 49,041 ± 21,107 and 74,258 ± 33,176 for the IV group. There were no significant differences between the HIO and IV groups relative to time to ROSC (p = 0.220). A repeated analysis of variance indicated that there were no significant differences between the groups relative to concentrations over time (p 0.05).Conclusion: The humerus intraosseous provides rapid and reliable access to administer life-saving medications during cardiac arrest.


2016 ◽  
Vol 11 (4) ◽  
pp. 271-277 ◽  
Author(s):  
Samuel Smith, BSN ◽  
Bradley Borgkvist, BSN ◽  
Teara Kist, BSN ◽  
Jason Annelin, BSN ◽  
Don Johnson, PhD ◽  
...  

Objective: This study compared the effects of amiodarone via sternal intraosseous (SIO) and intravenous (IV) routes on return of spontaneous circulation (ROSC), time to ROSC, concentration maximum (Cmax), time to maximum concentration (Tmax), and mean concentrations over time in a hypovolemic cardiac arrest model.Design: Prospective, between subjects, randomized experimental design.Setting: TriService Research Facility.Subjects: Yorkshire-cross swine (n = 28).Intervention: Swine were anesthetized and placed into cardiac arrest. After 2 minutes, cardiopulmonary resuscitation was initiated. After an additional 2 minutes, amiodarone 300 mg was administered via the tibial intraosseous TIO or the IV route. Blood samples were collected over 5 minutes. The plasma concentrations were analyzed using high-performance liquid chromatography tandem mass spectrometry.Main Outcome Measurements: ROSC, time to ROSC, Cmax, Tmax, and mean concentrations over time.Results: A multivariate analyses of variance indicated that there were no significant differences in the SIO and IV groups in ROSC (p = 0.191), time to ROSC (p 0.05), Tmax mean 88.1 ± 24.8 seconds versus 49.5 ± 21.8 seconds (p = 0.317), or Cmax mean 92,700 ± 161,112 ng/mL versus 64,159.8 ± 14,174.8 ng/mL (p = 0.260). A repeated analyses of variance indicated that there were no significant differences between the groups relative to concentrations over time (p 0.05).Conclusion: The SIO provides rapid and reliable access to administer life-saving medications during cardiac arrest.


2016 ◽  
Vol 11 (4) ◽  
pp. 237-242 ◽  
Author(s):  
Mark H. Wimmer, BSN ◽  
Kenneth Heffner, BSN ◽  
Michael Smithers, BSN ◽  
Richard Culley, BSN ◽  
Jennifer Coyner, PhD, CRNA ◽  
...  

Introduction: The American Heart Association (AHA) recommends intravenous (IV) or intraosseous (IO) vasopressin in Advanced Cardiac Life Support (ACLS). Obtaining IV access in hypovolemic cardiac arrest patients can be difficult, and IO access is often obtained in these life threatening situations. No studies have been conducted to determine the effects of humeral IO (HIO) access with vasopressin in the return of spontaneous circulation (ROSC). Our study compared the kinetics of vasopressin and ROSC with HIO with IV access in the hypovolemic swine model.Methods: Twenty-two Yorkshire swine were divided into three groups: HIO (n = 7), IV (n = 8), and a control group (n = 7). The IV and HIO group received vasopressin and cardiopulmonary resuscitation (CPR), while the control group received only CPR. All subjects were exsanguinated 31 percent of their blood volume, placed in cardiac arrest, and resuscitated per ACLS. Subjects that achieved ROSC were then monitored for 20 minutes. Blood samples (10 mL) collected at 0.5, 1, 1.5, 2, 2.5, 3, and 4 minutes after vasopressin injection and analyzed for maximum concentration (Cmax) and time to maximum concentration (Tmax). Data were analyzed using a multivariate analysis of variance (MANOVA) and a Fisher's Exact Test.Results: ROSC was achieved in every subject that received vasopressin via the HIO route. Data analysis using a MANOVA pairwise comparison revealed no difference between mean Cmax (p = 0.601) and Tmax (p = 0.771) of vasopressin administered IV versus HIO routes. Analysis of the mean serum concentrations at time intervals using a repeated measures analysis of variance found no difference (p 0.05). A Fisher's Exact Test revealed no difference in rate of ROSC between HIO and IV groups (p 0.05). Odds ratio determined that there was a 33 times higher chance of survival among HIO subjects versus control (CPR and Defibrillation; p = 0.03) and no difference in the survivability of the HIO or IV groups (p = 0.52). Conclusion: The data from this study strongly suggest that there is no significant difference in ROSC, time to ROSC, hemodynamics, or pharmacokinetics between HIO vasopressin and IV vasopressin. This research reinforces current AHA guidelines recommending the use of HIO route early over delaying care awaiting IV access.


2016 ◽  
Vol 11 (4) ◽  
pp. 253-260 ◽  
Author(s):  
Kathryn Hampton, BSN ◽  
Eric Wang, BSN ◽  
Jerome Ivan Argame, BSN ◽  
Tom Bateman, BSN ◽  
William Craig, DNP, CRNA ◽  
...  

Objective: This study compared the effects of amiodarone via tibial intraosseous (TIO) and intravenous (IV) routes on return of spontaneous circulation (ROSC), time to ROSC, maximum drug concentration (Cmax), time to maximum concentration (Tmax), and mean concentrations over time in a hypovolemic cardiac arrest model.Design: Prospective, between subjects, randomized experimental design.Setting: TriService Research Facility.Subjects: Yorkshire-cross swine (n = 28).Intervention: Swine were anesthetized and placed into cardiac arrest. After 2 minutes, cardiopulmonary resuscitation (CPR) was initiated. After an additional 2 minute, 300 mg of amiodarone were administered via the TIO or the IV route. Blood samples were collected over 5 minutes. The plasma concentrations were analyzed using high-performance liquid chromatography tandem mass spectrometry.Main Outcome Measurements: ROSC, time to ROSC, Cmax, Tmax, and mean concentrations over time.Results: A multivariate analysis of variance indicated that there were no significant differences in the TIO and IV groups in ROSC (p = 0.515), time to ROSC (p = 0.300), Cmax (p = 0.291), or Tmax (p = 0.475). The mean Cmax of the TIO group was 56,292 ± 11,504 ng/mL compared to 74,258 ± 11,504 ng/mL for the IV group. The Tmax for TIO and IV groups were 120 ± 25 and 94 ± 25, respectively. A repeated measures analysis of variance indicated that there were no significant differences between the groups relative to concentrations over time (p 0.05).Conclusion: The TIO provides rapid and reliable access to administer lifesaving medications during cardiac arrest.


2018 ◽  
Vol 13 (2) ◽  
pp. 97-106
Author(s):  
LTC Robert P. Long, II, PhD, CRNA ◽  
LTC Stephanie M. Gardner, DNP, CRNA ◽  
James Burgert, DNAP, CRNA ◽  
LTC Craig A. Koeller, DVM, DACLAM, AFRL ◽  
LTC Joseph O’Sullivan, PhD, CRNA ◽  
...  

Objective: Compare the maximum concentration (Cmax), time to maximum concentration (Tmax), mean concentration, rate of return of spontaneous circulation (ROSC), time to ROSC, and odds of ROSC when epinephrine is administered by humerus intraosseous (HIO) compared to intravenous (IV) routes in both a hypovolemic and normovolemic cardiac arrest model.Design: Prospective, between subjects, randomized experimental study.Setting: TriService Facility.Subjects: Twenty-eight adult Yorkshire Swine were randomly assigned to four groups: HIO normovolemia; HIO hypovolemia; IV normovolemia; and IV hypovolemia.Intervention: Swine were anesthetized. The hypovolemic group was exsanguinated 31 percent of their blood volume. Subjects were placed into arrest. After 2 minutes, cardiopulmonary resuscitation (CPR) was initiated. After another 2 minutes, 1 mg epinephrine was given by IV or HIO routes; blood samples were collected over 4 minutes. Hypovolemic groups received 500 mL of 5 percent albumin following blood sampling. CPR continued until ROSC or for 30 minutes.Main outcome measures: ROSC, time to ROSC, Cmax, Tmax, mean concentrations over time, odds of ROSC.Results: Cmax was significantly higher, the Tmax, and the time to ROSC were significantly faster in the HIO normovolemic compared to the HIO hypovolemic group (p 0.05). All seven in the HIO normovolemic group achieved ROSC compared to three of the HIO hypovolemic group. Odds of ROSC were 19.2 times greater in the HIO normovolemic compared the HIO hypovolemic group.Conclusion: The HIO is an effective route in a normovolemic model. However, the findings indicate that sufficient blood volume is essential for ROSC in a hypovolemic scenario.


2019 ◽  
Vol 3 (2) ◽  
pp. p34
Author(s):  
Steven Kertes ◽  
Valentina Fillman ◽  
Brandon Krawczyk ◽  
Logan Hirsch ◽  
Allison Martin ◽  
...  

BACKGROUND: Few studies have investigated the effects of hypovolemia on area under the curve (AUC) and the return of spontaneous circulation (ROSC) comparing adults and children in cardiac arrest.AIMS: To compare the epinephrine endotracheal (ET) administration relative to AUC, rate, time to, and odds of achieving ROSC between hypovolemic adult and pediatric cardiac arrest models.METHODS: This was an experimental study using male Adult ET and Pediatric ET swine. Pediatric ET pigs (N=7) weighed 20-30 kg representing the average weight for a child between 5 and 6 years of age. Adult ET pigs (N=7) weighed 60 to 80 kg. All were exsanguinated 35% of their blood volume. Swine were put into arrest for 2 minutes. Cardiopulmonary resuscitation (CPR) was initiated for 2 minutes; epinephrine was then administered. Blood samples were collected over 5 minutes. RESULTS: No significant difference occurred in AUC between the groups (p > 0.05). The Pediatric ET group had higher rates of ROSC and a shorter time to ROSC (p < 0.05). Pediatric ET group had a 15 times greater odds of achieving ROSC compared to the Adult ET group. CONCLUSION: Based on the results of this study, we recommend epinephrine administration via ET within the pediatric arrest model, but not for the adult.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alice Hutin ◽  
Yaël Levy ◽  
Fanny Lidouren ◽  
Matthias Kohlhauer ◽  
Pierre Carli ◽  
...  

Abstract Background The administration of epinephrine in the management of non-traumatic cardiac arrest remains recommended despite controversial effects on neurologic outcome. The use of resuscitative endovascular balloon occlusion of the aorta (REBOA) could be an interesting alternative. The aim of this study was to compare the effects of these 2 strategies on return of spontaneous circulation (ROSC) and cerebral hemodynamics during cardiopulmonary resuscitation (CPR) in a swine model of non-traumatic cardiac arrest. Results Anesthetized pigs were instrumented and submitted to ventricular fibrillation. After 4 min of no-flow and 18 min of basic life support (BLS) using a mechanical CPR device, animals were randomly submitted to either REBOA or epinephrine administration before defibrillation attempts. Six animals were included in each experimental group (Epinephrine or REBOA). Hemodynamic parameters were similar in both groups during BLS, i.e., before randomization. After epinephrine administration or REBOA, mean arterial pressure, coronary and cerebral perfusion pressures similarly increased in both groups. However, carotid blood flow (CBF) and cerebral regional oxygenation saturation were significantly higher with REBOA as compared to epinephrine administration (+ 125% and + 40%, respectively). ROSC was obtained in 5 animals in both groups. After resuscitation, CBF remained lower in the epinephrine group as compared to REBOA, but it did not achieve statistical significance. Conclusions During CPR, REBOA is as efficient as epinephrine to facilitate ROSC. Unlike epinephrine, REBOA transitorily increases cerebral blood flow and could avoid its cerebral detrimental effects during CPR. These experimental findings suggest that the use of REBOA could be beneficial in the treatment of non-traumatic cardiac arrest.


2019 ◽  
Vol 27 (5) ◽  
pp. 286-292
Author(s):  
Choung Ah Lee ◽  
Gi Woon Kim ◽  
Yu Jin Kim ◽  
Hyung Jun Moon ◽  
Yong Jin Park ◽  
...  

Objectives: The purpose of this study was to analyze the effect of cardiac arrest recognition by emergency medical dispatch on the pre-hospital advanced cardiac life support and to investigate the outcome of out-of-hospital cardiac arrest. Method: This study was conducted to evaluate the out-of-hospital cardiac arrest patients over 18 years of age, excluding trauma and poisoning patients, from 1 August 2015 to 31 July 2016. We investigated whether it was a cardiac-arrest recognition at dispatch. We compared the pre-hospital return of spontaneous circulation, the rate of survival admission and discharge, good neurological outcome, and also analyzed the time of securing vein, time of first epinephrine administration, and arrival time of paramedics. Results: A total of 3695 out-of-hospital cardiac arrest patients occurred during the study period, and 1468 patients were included in the study. Resuscitation rate by caller was significantly higher in the recognition group. The arrival interval between the first and second emergency service unit was shorter as 5.1 min on average, and the connection rate of paramedics and physicians before the arrival was 32.3%, which was significantly higher than that of the unrecognized group. The mean time required to first epinephrine administration was 13.1 min, which was significantly faster in the recognition group. However, there was no statistically significant difference between the two groups in patients with good neurological outcome, and rather the rate of return of spontaneous circulation and survival discharge was significantly higher in the non-recognition group. Conclusion: Although the recognition of cardiac arrest at dispatch does not directly affect survival rate and good neurological outcome, the activation of pre-hospital advanced cardiac life support and the shortening the time of epinephrine administration can increase pre-hospital return of spontaneous circulation. Therefore, effort to increase recognition by dispatcher is needed.


2021 ◽  

Objective: Obtaining vascular access during out-of-hospital cardiac arrest (OHCA) is challenging. The aim of this study was to compare the effectiveness of prehospital intraosseous infusion (IO) combined with in-hospital intravenous (IV) (pre-IO + in-IV) access versus the simple IV (pre-IV + in-IV) access in adult OHCA patients who do not achieve prehospital return of spontaneous circulation (ROSC). Methods: This retrospective observational study included adults with OHCA of presumed cardiac etiology between October 1, 2017-October 1, 2020 at an academic emergency department in China. All of the OHCA patients included within the study had Emergency Medical Services cardiopulmonary resuscitation and received prehospital epinephrine administration, but did not achieve prehospital ROSC. The study population were classified as either pre-IO + in-IV or IV (pre-IV + in-IV) based on their epinephrine administration route. The prehospital epinephrine routes were the first and only attempted route. The primary outcome investigated was sustained ROSC following arrival at the emergency department. The secondary outcome considered was the time from dispatch to the first epinephrine dose. Results: Of 193 included adult OHCA subjects who did not have prehospital ROSC, 128 received IV access only. The 65 pre-IO + in-IV-treated patients received epinephrine faster compared to IV-treated patients in terms of the median time from dispatch to the first injection of epinephrine (14.5 vs. 16.0 min, P = 0.001). In the pre-IO + in-IV group, 34 of 65 patients (52.3%) achieved sustained ROSC compared with 65 of 128 (50.8%) patients in the IV group (χ2 = 0.031, P = 0.841). There was no significant difference in sustained ROSC (adjusted OR1.049, 95% CI: 0.425-2.591, P = 0.918) between the two groups. Conclusion: A similar sustained ROSC rate was achieved for both the pre-IO + in-IV access group and the simple IV access group. Our results suggested that an IV route should be established quickly for prehospital IO-treated OHCA patients who do not achieve prehospital ROSC.


Author(s):  
Hyoung Youn Lee ◽  
Kamoljon Shamsiev ◽  
Najmiddin Mamadjonov ◽  
Yong Hun Jung ◽  
Kyung Woon Jeung ◽  
...  

Severe neurological impairment was more prevalent in cardiac arrest survivors who were administered epinephrine than in those administered placebo in a randomized clinical trial; short-term reduction of brain tissue O2 tension (PbtO2) after epinephrine administration in swine following a short duration of untreated cardiac arrest has also been reported. We investigated the effects of epinephrine administered during cardiopulmonary resuscitation (CPR) on cerebral oxygenation after restoration of spontaneous circulation (ROSC) in a swine model with a clinically relevant duration of untreated cardiac arrest. After 7 min of ventricular fibrillation, 24 pigs randomly received either epinephrine or saline placebo during CPR. Parietal cortex measurements during 60-min post-resuscitation period showed that the area under the curve (AUC) for PbtO2 was smaller in the epinephrine group than in the placebo group during the initial 10-min period and subsequent 50-min period (both p < 0.05). The AUC for number of perfused cerebral capillaries was smaller in the epinephrine group during the initial 10-min period (p = 0.005), but not during the subsequent 50-min period. In conclusion, epinephrine administered during CPR reduced PbtO2 for longer than 10 min following ROSC in a swine model with a clinically relevant duration of untreated cardiac arrest.


Sign in / Sign up

Export Citation Format

Share Document