scholarly journals Mesenchymal Stem Cells in Regenerative Therapy of the Nervous System

2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Jose Yanez
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
D. J. Griffon ◽  
J. Cho ◽  
J. R. Wagner ◽  
C. Charavaryamath ◽  
J. Wei ◽  
...  

Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs) through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs afterin vivoimplantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs) offer an abundant source of immature and immunoprivileged stem cells. In this study, equine UCM-MSCs (eqUCM-MSCs) conditioned for 3 and 7 days on chitosan films at 5% oxygen were compared to eqUCM-MSCs under standard conditions. Equine UCM-MSCs formed spheroids on chitosan but yielded 72% less DNA than standard eqUCM-MSCs. Expression ofSox2,Oct4, andNanogwas 4 to 10 times greater in conditioned cells at day 7. Fluorescence-labeled cells cultured for 7 days under standard conditions or on chitosan films under hypoxia were compared in a bilateral patellar tendon defect model in rats. Fluorescence was present in all treated tendons, but the modulus of elasticity under tension was greater in tendons treated with conditioned cells. Chitosan and hypoxia affected cell yield but improved the stemness of eqUCM-MSCs and their contribution to the healing of tissues. Given the abundance of allogenic cells, these properties are highly relevant to clinical applications and outweigh the negative impact on cell proliferation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Aofei Yang ◽  
Chaochao Yu ◽  
Qilin Lu ◽  
Hao Li ◽  
Zhanghua Li ◽  
...  

Osteoporosis, femoral head necrosis, and congenital bone defects are orthopedic disorders characterized by reduced bone generation and insufficient bone mass. Bone regenerative therapy primarily relies on the bone marrow mesenchymal stem cells (BMSCs) and their ability to differentiate osteogenically. Icariin (ICA) is the active ingredient of Herba epimedii, a common herb used in traditional Chinese medicine (TCM) formulations, and can effectively enhance BMSC proliferation and osteogenesis. However, the underlying mechanism of ICA action in BMSCs is not completely clear. In this review, we provide an overview of the studies on the role and mechanism of action of ICA in BMSCs, to provide greater insights into its potential clinical use in bone regeneration.


2019 ◽  
Vol 370 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Shen Cheng ◽  
Susheel Kumar Nethi ◽  
Sneha Rathi ◽  
Buddhadev Layek ◽  
Swayam Prabha

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. SCI-26-SCI-26
Author(s):  
Simón Méndez-Ferrer

Hematopoietic stem cells (HSCs) traffic between bone marrow and circulation, what allows for life-saving clinical transplantation. Our previous work has shown that HSC numbers in blood follow circadian oscillations that are regulated by the central pacemaker in the brain, which reaches bone marrow nestin+ mesenchymal stem cells through peripheral sympathetic nerves. In the perinatal bone marrow, HSC-niche forming mesenchymal stem cells might be different from those that form the skeleton and some of them might be neural crest-derived, like peripheral neurons and supporting glial cells. Thus, tight regulation of the bone marrow stem-cell niche in vertebrates might build upon developmental relationships of its cellular components. We have found recently that cholinergic nerves regulate HSC maintenance, proliferation and migration in divergent niches. We will present unpublished evidence of how both branches of the autonomic nervous system cooperate to regulate HSC maintenance and function in spatially and temporally distinct niches. Moreover, we have shown recently that damage to this regulatory network is essential for the manifestation of myeloproliferative neoplasms. In these diseases, previously thought to be driven solely by mutated HSCs, protecting the HSC niche might represent a novel therapeutic strategy. Patients with myeloproliferative neoplasms have a higher risk of developing acute leukemia. However, at this stage, leukemic cells might be less sensitive to the normal control by the microenvironment and, instead, acute myelogenous leukemic cells might transform the bone marrow niches to support their own survival. We will discuss potential contributions of HSC niches to myeloproliferative neoplasms and MLL-AF9-driven acute myeloid leukemia. Disclosures Off Label Use: Potential use of selective estrogen receptor modulators and beta3-adrenergic agonists in myeloproliferative neoplasms.


Sign in / Sign up

Export Citation Format

Share Document