scholarly journals Environmental filtering drives herb community composition and functional trait changes across an elevational gradient

2015 ◽  
Vol 148 (3) ◽  
pp. 301-310 ◽  
Author(s):  
Zihan Jiang ◽  
Keming Ma
2021 ◽  
Author(s):  
María Alisa Alvarez ◽  
Ana Agustina Barros ◽  
Diego Pedro Vázquez ◽  
Lorena de Jesús Bonjour ◽  
Jonas Lembrechts ◽  
...  

Abstract Hikers and livestock using mountain trails damage native vegetation and act as seed vectors, thus favouring the spread of non-native plants. We evaluated the effect of trails and livestock abundance on the success of non-native plants in the arid central Andes of Argentina. We surveyed six trails, covering elevations between 2400 m and 3570 m a.s.l. and recorded non-native and native vegetation using transects distributed along the elevational gradient and spanning distances up to 22 m from the trail. We assessed how non-native occurrence, richness and cover varied with distance from the trail, intensity of use by livestock, native plant community composition and elevation. We found that trails favoured non-native occurrence, but did not influence richness and cover, while livestock favoured non-native occurrence, richness and cover. Non-native richness and cover decreased with elevation and varied with native community composition. In addition, non-native richness was positively correlated with native shrub cover suggesting possible facilitative interactions. Our results show that despite strong environmental filtering that decreases non-native abundance with elevation, non-natives occur up to the upper limits of vegetation, and that trails and livestock favour their spread in the mountains.


2021 ◽  
Author(s):  
Kenny Helsen ◽  
Yeng-Chen Shen ◽  
Tsung-Yi Lin ◽  
Chien-Fan Chen ◽  
Chu-Mei Huang ◽  
...  

While the relative importance of climate filtering is known to be higher for woody species assemblages than herbaceous assemblage, it remains largely unexplored whether this pattern is also reflected between the woody overstory and herbaceous understory of forests. While climatic variation will be more buffered by the tree layer, the understory might also respond more to small-scale soil variation, next to experiencing additional environmental filtering due to the overstory's effects on light and litter quality. For (sub)tropical forests, the understory often contains a high proportion of fern and lycophyte species, for which environmental filtering is even less well understood. We explored the proportional importance of climate proxies and soil variation on the species, functional trait and (functional) diversity patterns of both the forest overstory and fern and lycophyte understory along an elevational gradient from 850 to 2100 m a.s.l. in northern Taiwan. We selected nine functional traits expected to respond to soil nutrient or climatic stress for this study and furthermore verified whether they were positively related across vegetation layers, as expected when driven by similar environmental drivers. We found that climate was a proportionally more important predictor than soil for the species composition of both vegetation layers and trait composition of the understory. The stronger than expected proportional effect of climate for the understory was likely due to fern and lycophytes' higher vulnerability to drought, while the high importance of soil for the overstory seemed driven by deciduous species. The environmental drivers affected different response traits in both vegetation layers, however, which together with additional overstory effects on understory traits, resulted in a strong disconnection of community-level trait values across layers. Interestingly, species and functional diversity patterns could be almost exclusively explained by climate effects for both vegetational layers, with the exception of understory species richness. This study illustrates that environmental filtering can differentially affect species, trait and diversity patterns and can be highly divergent for forest overstory and understory vegetation, and should consequently not be extrapolated across vegetation layers or between composition and diversity patterns.


2019 ◽  
Vol 116 (29) ◽  
pp. 14645-14650 ◽  
Author(s):  
Brianna R. Beechler ◽  
Kate S. Boersma ◽  
Peter E. Buss ◽  
Courtney A. C. Coon ◽  
Erin E. Gorsich ◽  
...  

Novel parasites can have wide-ranging impacts, not only on host populations, but also on the resident parasite community. Historically, impacts of novel parasites have been assessed by examining pairwise interactions between parasite species. However, parasite communities are complex networks of interacting species. Here we used multivariate taxonomic and trait-based approaches to determine how parasite community composition changed when African buffalo (Syncerus caffer) acquired an emerging disease, bovine tuberculosis (BTB). Both taxonomic and functional parasite richness increased significantly in animals that acquired BTB than in those that did not. Thus, the presence of BTB seems to catalyze extraordinary shifts in community composition. There were no differences in overall parasite taxonomic composition between infected and uninfected individuals, however. The trait-based analysis revealed an increase in direct-transmitted, quickly replicating parasites following BTB infection. This study demonstrates that trait-based approaches provide insight into parasite community dynamics in the context of emerging infections.


2016 ◽  
Vol 13 (10) ◽  
pp. 2901-2911 ◽  
Author(s):  
Torsten Hauffe ◽  
Christian Albrecht ◽  
Thomas Wilke

Abstract. The Balkan Lake Ohrid is the oldest and most diverse freshwater lacustrine system in Europe. However, it remains unclear whether species community composition, as well as the diversification of its endemic taxa, is mainly driven by dispersal limitation, environmental filtering, or species interaction. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics, as provided by the unifying framework of the “metacommunity speciation model”.The current study used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process-based metacommunity analyses. Specifically, the study aimed (1) to identifying the relative importance of the three community assembly processes and (2) to test whether the importance of these individual processes changes gradually with lake depth or discontinuously with eco-zone shifts.Based on automated eco-zone detection and process-specific simulation steps, we demonstrated that dispersal limitation had the strongest influence on gastropod community composition. However, it was not the exclusive assembly process, but acted together with the other two processes – environmental filtering and species interaction. The relative importance of the community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter.This suggests that environmental characteristics have a pronounced effect on shaping gastropod communities via assembly processes. Moreover, the study corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community composition) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological speciation. These findings contribute to the main goal of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) deep drilling initiative – inferring the drivers of biotic evolution – and might provide an integrative perspective on biological and limnological dynamics in ancient Lake Ohrid.


2019 ◽  
Author(s):  
Micha Weil ◽  
Haitao Wang ◽  
Mia Bengtsson ◽  
Daniel Köhn ◽  
Anke Günther ◽  
...  

AbstractDrained peatlands are significant sources of the greenhouse gas (GHG) carbon dioxide. Rewetting is a proven strategy to protect carbon stocks; however, it can lead to increased emissions of the potent GHG methane. The response to rewetting of soil microbiomes as drivers of these processes is poorly understood, as are biotic and abiotic factors that control community composition.We analyzed the pro- and eukaryotic microbiomes of three contrasting pairs of minerotrophic fens subject to decade-long drainage and subsequent rewetting. Also, abiotic soil properties including moisture, dissolved organic matter, methane fluxes and ecosystem respiration rates.The composition of the microbiomes was fen-type-specific, but all rewetted sites showed higher abundance of anaerobic taxa compared to drained sites. Based on multi-variate statistics and network analyses we identified soil moisture as major driver of community composition. Furthermore, salinity drove the separation between coastal and freshwater fen communities. Methanogens were more than tenfold more abundant in rewetted than in drained sites, while their abundance was lowest in the coastal fen, likely due to competition with sulfate reducers. The microbiome compositions were reflected in methane fluxes from the sites. Our results shed light on the factors that structure fen microbiomes via environmental filtering.


2019 ◽  
Vol 30 (5) ◽  
pp. 973-983 ◽  
Author(s):  
Yi Ding ◽  
Runguo Zang ◽  
Xinghui Lu ◽  
Jihong Huang ◽  
Yue Xu

Diversity ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 456
Author(s):  
Lacy D. Chick ◽  
Jean-Philippe Lessard ◽  
Robert R. Dunn ◽  
Nathan J. Sanders

A fundamental tenet of biogeography is that abiotic and biotic factors interact to shape the distributions of species and the organization of communities, with interactions being more important in benign environments, and environmental filtering more important in stressful environments. This pattern is often inferred using large databases or phylogenetic signal, but physiological mechanisms underlying such patterns are rarely examined. We focused on 18 ant species at 29 sites along an extensive elevational gradient, coupling experimental data on critical thermal limits, null model analyses, and observational data of density and abundance to elucidate factors governing species’ elevational range limits. Thermal tolerance data showed that environmental conditions were likely to be more important in colder, more stressful environments, where physiology was the most important constraint on the distribution and density of ant species. Conversely, the evidence for species interactions was strongest in warmer, more benign conditions, as indicated by our observational data and null model analyses. Our results provide a strong test that biotic interactions drive the distributions and density of species in warm climates, but that environmental filtering predominates at colder, high-elevation sites. Such a pattern suggests that the responses of species to climate change are likely to be context-dependent and more specifically, geographically-dependent.


2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Xiaoliang Jiang ◽  
Wenzhi Liu ◽  
Lunguang Yao ◽  
Guihua Liu ◽  
Yuyi Yang

ABSTRACT The relative importance of local environments and dispersal limitation in shaping denitrifier community structure remains elusive. Here, we collected soils from 36 riverine, lacustrine and palustrine wetland sites on the remote Tibetan Plateau and characterized the soil denitrifier communities using high-throughput amplicon sequencing of the nirS and nirK genes. Results showed that the richness of nirS-type denitrifiers in riverine wetlands was significantly higher than that in lacustrine wetlands but not significantly different from that in palustrine wetlands. There was no clear distinction in nir community composition among the three kinds of wetlands. Irrespective of wetland type, the soil denitrification rate was positively related to the abundance, but not the α-diversity, of denitrifying communities. Soil moisture, carbon availability and soil temperature were the main determinants of diversity [operational taxonomic unit (OTU) number] and abundance of thenirS-type denitrifier community, while water total organic carbon, soil NO3– and soil moisture were important in controlling nirK-type denitrifier diversity and abundance. The nirS community composition was influenced by water electrical conductivity, soil temperature and water depth, while the nirK community composition was affected by soil electrical conductivity. Spatial distance explained more variation in the nirS community composition than in the nirK community composition. Our findings highlight the importance of both environmental filtering and spatial distance in explaining diversity and biogeography of soil nir communities in remote and relatively undisturbed wetlands.


2018 ◽  
Vol 86 ◽  
pp. 1-8 ◽  
Author(s):  
Rafael Molina-Venegas ◽  
Abelardo Aparicio ◽  
Sébastien Lavergne ◽  
Juan Arroyo

Sign in / Sign up

Export Citation Format

Share Document