scholarly journals A Comparative Study in Predicting Colon Rectum Cancer using Auto Regressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) Models

2012 ◽  
Vol 44 (9) ◽  
pp. 17-22 ◽  
Author(s):  
S. ShenbagaEzhil ◽  
C. Vijayalakshmi
The Winners ◽  
2008 ◽  
Vol 9 (2) ◽  
pp. 112
Author(s):  
Harjum Muharam ◽  
Muhammad Panji

This paper discusses technical analysis widely used by investors. There are many methods that exist and used by investor to predict the future value of a stock. In this paper we start from finding the value of Hurst (H) exponent of LQ 45 Index to know the form of the Index. From H value, we could determinate that the time series data is purely random, or ergodic and ant persistent, or persistent to a certain trend. Two prediction tools were chosen, ARIMA (Auto Regressive Integrated Moving Average) which is the de facto standard for univariate prediction model in econometrics and Artificial Neural Network (ANN) Back Propagation. Data left from ARIMA is used as an input for both methods. We compared prediction error from each method to determine which method is better. The result shows that LQ45 Index is persistent to a certain trend therefore predictable and for outputted sample data ARIMA outperforms ANN.


2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Pei-Fang (Jennifer) Tsai ◽  
Po-Chia Chen ◽  
Yen-You Chen ◽  
Hao-Yuan Song ◽  
Hsiu-Mei Lin ◽  
...  

For hospitals’ admission management, the ability to predict length of stay (LOS) as early as in the preadmission stage might be helpful to monitor the quality of inpatient care. This study is to develop artificial neural network (ANN) models to predict LOS for inpatients with one of the three primary diagnoses: coronary atherosclerosis (CAS), heart failure (HF), and acute myocardial infarction (AMI) in a cardiovascular unit in a Christian hospital in Taipei, Taiwan. A total of 2,377 cardiology patients discharged between October 1, 2010, and December 31, 2011, were analyzed. Using ANN or linear regression model was able to predict correctly for 88.07% to 89.95% CAS patients at the predischarge stage and for 88.31% to 91.53% at the preadmission stage. For AMI or HF patients, the accuracy ranged from 64.12% to 66.78% at the predischarge stage and 63.69% to 67.47% at the preadmission stage when a tolerance of 2 days was allowed.


Author(s):  
Agus Saptoro ◽  
Moses O. Tadé ◽  
Hari Vuthaluru

Abstract This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for developing artificial neural network (ANN) models. This method is a modified version of the Kennard-Stone (KS) algorithm. With this method, better data splitting, in terms of data representation and enhanced performance of developed ANN models, can be achieved. Compared with standard KS algorithm and another improved KS algorithm (data division based on joint x - y distances (SPXY) method), the proposed method has also shown a better performance. Therefore, the proposed technique can be used as an advantageous alternative to other existing methods of data splitting for developing ANN models. Care should be taken when dealing with large amount of dataset since they may increase the computational load for MDKS due to its variance-covariance matrix calculations.


2015 ◽  
Vol 35 (02) ◽  
pp. 241
Author(s):  
Dyah Susilokarti ◽  
Sigit Supadmo Arif ◽  
Sahid Susanto ◽  
Lilik Sutiarso

Optimum climate condition and water availability are essential to support strategic venue and time for plants to grow and produce.  Precipitation prediction is needed to determine how much precipitation will provide water for plants on each stage of growth. Nowadays, the high variability of precipitation calls for a prediction model that will accurately foreseethe precipitation condition in the future. The prediction conducted is based on time-series data analysis. The research aims to comparethe effectiveness of three precipitation prediction methods, which are Fast Forier Transformation (FFT), Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN).  Their respective performances are determined by their Mean Square Error (MSE) values.  Methods with highest correlation values and lowest MSE shows the best performance. The MSE result for FFT is 14,92; ARIMA is 17,49; and  ANN is 0,07. This research concluded that Artificial Neural Network (ANN) method showed best performance compare to the other two because it had produced a prediction with the lowest MSE value.Keywords: Precipitation prediction, Fast Forier Transformation (FFT), Autoregressive Integrated Moving Average ABSTRAKKondisi iklim dan ketersediaan air yang optimal bagi pertumbuhan dan perkembangan tanaman sangat diperlukan dalam upaya mendukung strategi budidaya tanaman sesuai ruang dan waktu. Prediksi curah hujan sangat diperlukan untuk untuk mengetahui sejauh mana curah hujan dapat memenuhi kebutuhan air pada setiap tahap pertumbuhantanaman. Variabilitas curah hujan yang tinggi saat ini, membutuhkan pemodelan yang dapat memprediksi secara akurat bagaimana kondisi curah hujan dimasa yang akan datang. Prediksi yang dilakukan adalah prediksi berdasarkan urutan waktu ().  Tujuan dari penelitian ini adalah untuk membandingkan akurasi prediksi curah hujan antara metode  (FFT),  (ARIMA) dan (ANN). Kinerja ketiga metode yang digunakan dilihat dari nilai  (MSE). Metode dengan nilai korelasi tertinggi dan nilai MSE terkecil menunjukkan kinerja terbaik. Hasil penelitan untuk FFT diperoleh nilai MSE = 14,92, ARIMA = 17,49 sedangkan ANN = 0,07. Ini menunjukkan bahwa metode   (ANN) menunjukkan kinerja yang paling baik diantara dua metode lainnya karena menghasilkan prediksi yangmempunyai nilai MSE terkecil.Kata kunci: Prediksi curah hujan,FFT, ARIMA dan ANN 


Author(s):  
SAWIT KASURIYA ◽  
CHAI WUTIWIWATCHAI ◽  
VARIN ACHARIYAKULPORN ◽  
CHULARAT TANPRASERT

This paper reports a comparative study between a continuous hidden Markov model (CHMM) and an artificial neural network (ANN) on a text dependent, closed set speaker identification (SID) system with Thai language recording in office and telephone environment. Thai isolated digit "0–9" and their concatenation are used as speaking text. Mel frequency cepstral coefficients (MFCC) are selected as the studied features. Two well-known recognition engines, CHMM and ANN, are conducted and compared. The ANN system (multilayer perceptron network with backpropagation learning algorithm) is applied with a special design of input feeding methods in avoiding the distortion from the normalization process. The general Gaussian density distribution HMM is developed for CHMM system. After optimizing some system's parameters by performing some preliminary experiments, CHMM gives the best identification rate at 90.4%, which is slightly better than 90.1% of ANN on digit "5" in office environment. For telephone environment, ANN gives the best identification rate at 88.84% on digit "0" which is higher than 81.1% of CHMM on digit "3". When using 3-concatenated digit, the identification rate of ANN and CHMM achieves 97.3% and 95.7% respectively for office environment, and 92.1% and 96.3% respectively for telephone environment.


Sign in / Sign up

Export Citation Format

Share Document