scholarly journals Improved the Detection Ratio of Cyber Attack using Feature Reduction based on Support Vector Machine and Glowworm Optimization

2016 ◽  
Vol 155 (10) ◽  
pp. 33-37
Author(s):  
Himanshu Shroti ◽  
Kaptan Singh ◽  
Amit Saxena

The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.


2020 ◽  
Vol 23 (4) ◽  
pp. 319-325
Author(s):  
Yuanke Xu ◽  
Yaping Wen ◽  
Guosheng Han

Background: Evidence have increasingly indicated that for human disease, cell metabolism are deeply associated with proteins. Structural mutations and dysregulations of these proteins contribute to the development of the complex disease. Free radicals are unstable molecules that seek for electrons from the surrounding atoms for stability. Once a free radical binds to an atom in the body, a chain reaction occurs, which causes damage to cells and DNA. An antioxidant protein is a substance that protects cells from free radical damage. Accurate identification of antioxidant proteins is important for understanding their role in delaying aging and preventing and treating related diseases. Therefore, computational methods to identify antioxidant proteins have become an effective prior-pinpointing approach to experimental verification. Methods: In this study, support vector machines was used to identify antioxidant proteins, using amino acid compositions and 9-gap dipeptide compositions as feature extraction, and feature reduction by Principal Component Analysis. Results: The prediction accuracy Acc of this experiment reached 98.38%, the recall rate Sn of the positive sample was found to be 99.27%, the recall rate Sp of the negative sample reached 97.54%, and the MCC value was 0.9678. To evaluate our proposed method, the predictive performance of 20 antioxidant proteins from the National Center for Biotechnology Information(NCBI) was studied. As a result, 20 antioxidant proteins were correctly predicted by our method. Experimental results demonstrate that the performance of our method is better than the state-of-the-art methods for identification of antioxidant proteins. Conclusion: We collected experimental protein data from Uniport, including 253 antioxidant proteins and 1552 non-antioxidant proteins. The optimal feature extraction used in this paper is composed of amino acid composition and 9-gap dipeptide. The protein is identified by support vector machine, and the model evaluation index is obtained based on 5-fold cross-validation. Compared with the existing classification model, it is further explained that the SVM recognition model constructed in this paper is helpful for the recognition of antioxidized proteins.


Author(s):  
Tiejun Wang ◽  
Weilan Wang

As an art image, Thangka images have rich themes, various forms of expression, complex picture content and many layers of color representation. This paper mainly constructs a multi-core support vector machine (SVM) based on the information entropy feature-weighted radial basis kernel function. In this paper, the kernel function is optimized, and the feature reduction is performed by using the random forest feature selection algorithm with average accuracy degradation. Finally, the effective classification of the icon image and the mandala image in Thangka is realized. The research results provide support for the follow-up study of Thangka image annotation and retrieval.


Sign in / Sign up

Export Citation Format

Share Document