scholarly journals Effect of Geometrical Parameters On Sensitivity And Volume Of Dual Octal Ring

2021 ◽  
Vol 23 (11) ◽  
pp. 776-790
Author(s):  
Varsha Anil Kamble ◽  

Force transducer is one of the load cell which is used to measure force or weight, pressure etc. various types of transducers are manufacturing for various applications. But most of strain gauge type of transducer is used. In current research, optimization of octagonal type of force transducer design is carried out by maximizing sensitivity and minimizing the volume. Force transducer is analyze with the help of finite element method and find the critical parameters, its effect also as sensitivity and volume. Response surface methodology is used for experimental set up. For performance of all parameters analysis of variance is carried out and multi-objective optimization is also performed.

2006 ◽  
Vol 30 (1) ◽  
pp. 167-181
Author(s):  
Behrouz Shiari ◽  
Peter M. Wild

The coupled finite element method is used to design a novel miniaturized piezoelectric force transducer for the pulp refiners. The analysis focuses on a proposed transducer design using commercially available piezoelectric sensing element and a steel assembled housing. The software ANSYS was used to create a finite element model in order to improve transducer electromechanical behaviour. The primary goal of modeling is to design a transducer with a frequency response higher than a lab-scale refiner. Thus, modal and harmonic responses of the transducer model are studied. A coupled electromechanical model is used for prediction the output of the transducer. In order to enhance the performance of the transducer, the design is studied with respect to output magnitude and a flat frequency response. The modeling results are used for fabrication a prototype force transducer. The experimental results showed good agreement with the modeling.


2020 ◽  
Vol 2020 (10) ◽  
pp. 22-28
Author(s):  
Vadim Kuc ◽  
Dmitriy Gridin

The work purpose was the investigation of dependence impact of tool geometrical parameters upon shaping effort during internal groove cutting. As a realization for the fulfillment of the helical groove processing investigation there was used a software complex based on a finite element method and a computer mathematic system. As a result of the investigations carried out there was obtained a regression equation manifesting the dependence of factors impact upon axial force falling on one tooth of the tool in the set scale of factor parameters. The scientific novelty consists in that in the paper there is considered a new method for helical groove cutting in which a shaping motion is carried out at the expense of the contact interaction of a tool and a billet performing free cutting. The investigation results obtained allowed determining the number of teeth operating simultaneously, that can be used further at cutting mode setting, and also as recommendations during designing tool design.


2013 ◽  
Vol 853 ◽  
pp. 619-624
Author(s):  
Natalia Lvova ◽  
K. Kravchuk ◽  
I. Shirokov

The automatic scratch geometrical parameters analysis algorithms based on the images obtained by scanning probe microscopy have been developed. We provide a description of the technique to determine the contact area and the scratch volume with and without account of the pile-ups. The developed algorithms are applied to measure the dynamic hardness by sclerometry on the submicron and nanometer scale.


2013 ◽  
Vol 307 ◽  
pp. 161-165
Author(s):  
Hai Jin ◽  
Jin Fa Xie

A multi-objective genetic algorithm is applied into the layout optimization of tracked self-moving power. The layout optimization mathematical model was set up. Then introduced the basic principles of NSGA-Ⅱ, which is a Pareto multi-objective optimization algorithm. Finally, NSGA-Ⅱwas presented to solve the layout problem. The algorithm was proved to be effective by some practical examples. The results showed that the algorithm can spread toward the whole Pareto front, and provide many reasonable solutions once for all.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
H. Al-Gahtani ◽  
A. Khathlan ◽  
M. Sunar ◽  
M. Naffa'a

The juncture of a small cylindrical nozzle to a large cylindrical vessel is very common in the pressure vessel industry. Upon fabrication, it is required that the whole structure is subjected to pressure testing. The test can be expensive as it necessitates pressurizing the whole structure typically having a large volume. Hence, it is proposed to make a “local test,” which is considerably simpler as it involves capping the small nozzle and testing only a relatively small portion of the structure. This paper investigates the accuracy and reliability of such an alternative test, using the finite-element method. Two different finite-element types are used in the study, specifically a shell-based element and a solid-based element. The verification of the finite-element results for two different cases shows that the models used in the study are valid. It also proves that the two element types yield very similar stress results. In addition, the study includes a numerical investigation of more than 40 different nozzle-to-vessel junctures with a wide range of parameters for the nozzle and vessel. The results indicate that the use of cylindrical caps that are slightly larger than the nozzle is not recommended as it produces stresses that are significantly different from those for the original required pressure test. As such, the study provides an estimate of the smallest size of the cap that may be used in the local test to generate stresses that agree with the full test. For most practical geometries, it is shown that the size of the cap needs to be at least 2–30 times larger than that of the nozzle, depending on the geometrical parameters of the juncture.


2014 ◽  
Vol 1046 ◽  
pp. 508-511
Author(s):  
Jian Rong Zhu ◽  
Yi Zhuang ◽  
Jing Li ◽  
Wei Zhu

How to reduce energy consumption while improving utility of datacenter is one of the key technologies in the cloud computing environment. In this paper, we use energy consumption and utility of data center as objective functions to set up a virtual machine scheduling model based on multi-objective optimization VMSA-MOP, and design a virtual machine scheduling algorithm based on NSGA-2 to solve the model. Experimental results show that compared with other virtual machine scheduling algorithms, our algorithm can obtain relatively optimal scheduling results.


Author(s):  
Wakae Kozukue ◽  
Ichiro Hagiwara ◽  
Yasuhiro Mohri

In this paper the reduction analysis of the so-called ‘booming noise’, which occurs due to the resonance of a vehicle cabin, is tried to carry out by using the finite element method. For the reduction method a Helmholtz resonator, which is well known in the field of acoustics, is attached to a vehicle cabin. The resonance frequency of a Helmholtz resonator can be varied by adjusting the length of its throat. The simply shaped Helmholtz resonator is set up to the back of the cabin according to the resonance frequency of the cabin and the frequency response of the sound pressure at a driver’s ear position is calculated by using the finite element method. It is confirmed that the acoustical characteristics of the cabin is changed largely by attaching the resonator and the sound quality is quite varied. The resonance frequency of the resonator can be considered to follow the acoustical characteristics of the cabin by using an Origami structure as a throat. So, in the future the analysis by using an Origami structure Helmholtz resonator should be performed.


Author(s):  
Pengfei Li ◽  
Fuquan Hu ◽  
Xuwei Wang ◽  
Zheng He ◽  
Zhi Gang

Focusing on the general and localized elastoplastic buckling of the cylindrical section of steel containment under axial pressure, nonlinear finite element method (FEM) and small-scaled experiments are applied to analysis. First, FEM analysis is conducted considering nonlinear items caused by geometric shape imperfection and elastoplastic constitutive model by the arc-length method RIKS procedure. Parameter sensitivity of the buckling is revealed. Then, small-scaled experiments are carried out. Buckles status is observed, and key geometrical parameters’ influence are found. The results show that cylindrical buckling under axial pressure is sensitive to geometrical parameters and imperfection. It is necessary to employ more realistic parameters to the FEM analysis via accurate geometrical measurement. This research has reference value for the design and fabrication of AP series steel containment vessel.


2018 ◽  
Vol 230 ◽  
pp. 784-793 ◽  
Author(s):  
Jyun-De Liang ◽  
Chien-Yeh Hsu ◽  
Tai-Chih Hung ◽  
Yuan-Ching Chiang ◽  
Sih-Li Chen

Sign in / Sign up

Export Citation Format

Share Document