scholarly journals Assessing The Impact Of Sediments On Best Management Practices (Bmps) For Highway Runoff Control At Wolaita Sodo Town

2021 ◽  
Vol 23 (11) ◽  
pp. 734-748
Author(s):  
Dagimwork Asele Manuka ◽  

The goals of this work are to estimate the amount of erosion and to evaluate the impacts of sediments on Best Management Practices (BMPs) for highway runoff and also used to estimate the annual erosion and sediment yield from the construction sites considering various erosion control management methods that might be used in the sites. Once the sediment yield is found, a model was designed to estimate the sediment capture efficiency of different Best Management Practices (BMPs) and to evaluate the service year of each BMP before it is filled with sediment. The two major objectives of this project are: to predict sediment yield from highway construction sites under different erosion management conditions and secondly to estimate the service year of sediment control BMPs treating runoff from highway construction sites. The BMPs selected for evaluation were: detention ponds, infiltration trenches, grass lined swales, grass lined swales with rock check dams, and bio retention areas. Each respective BMP requires different measures of efficiency to accurately assess its effectiveness and service year.

EDIS ◽  
2007 ◽  
Vol 2007 (17) ◽  
Author(s):  
Orlando A. Diaz ◽  
Timothy A. Lang ◽  
Samira H. Daroub ◽  
Viviana M. Nadal

SL-228-Sp, a 9-page illustrated fact sheet by O.A. Diaz, T.A. Lang, S.H. Daroub, and V.M. Nadal, is the Spanish language version of "SL228/SS448: Best Management Practices in the Everglades Agricultural Area: Controlling Particulate Phosphorus and Canal Sediments." It explains and discusses particulate P and sediment control practices, which serve as important tools in efforts to improve water quality in the basin. This EDIS article is one in a series that attempts to explain in easily understandable terms the implementation methods and rationale behind the main P load reducing BMPs employed on EAA farms. Published by the UF Department of Soil and Water Sciences, August 2007. SL228SP/SS476: Mejores Prácticas de Manejo en el Area Agrícola de los Everglades: Controlando el Fósforo en Partícula y Sedimentos en Canales (ufl.edu) Ask IFAS: Best Management Practices in the Everglades Agricultural Area series (en espanol) (ufl.edu)


2021 ◽  
Author(s):  
Sara Garcia Figuera ◽  
Holly Deniston-Sheets ◽  
Elizabeth E Grafton-Cardwell ◽  
Bruce Babcock ◽  
Mark Lubell ◽  
...  

Huanglongbing (HLB) disease of citrus, associated with the bacterium “Candidatus Liberibacter asiaticus”, is confined to residential properties in Southern California eight years after it was first detected in the state. To prevent the spread of HLB to commercial citrus groves, growers have been asked to adopt a portfolio of voluntary best management practices. This study evaluates the citrus industry’s propensity to adopt these practices using surveys and a novel multivariate ordinal regression model. We estimate the impact on adoption of perceived vulnerability to HLB, intentions to stay informed and communicate about the disease and various socio-economic factors, and reveal what practices are most likely to be jointly adopted as an integrated approach to HLB. Survey participants were in favor of scouting and surveying for HLB symptoms, but they were reluctant to test trees, use early detection technologies (EDTs) or install barriers around citrus groves. Most practices were perceived as complementary, particularly visual inspections and some combinations of preventive practices with tests and EDTs. Participants who felt more vulnerable to HLB had a higher propensity to adopt several practices, as well as those who intended to stay informed and communicate with the coordinators of the HLB control program, although this effect was modulated by the perceived vulnerability to HLB. Communication with neighbors and the size of citrus operations also influenced practice adoption. Based on these results, we provide recommendations for outreach about HLB management in California and suggest future directions for research about the adoption of plant disease management practices.


Author(s):  
David WEINDORF ◽  
Beatrix HAGGARD ◽  
Teodor RUSU ◽  
Horea CACOVEAN ◽  
Stephanie JOHNSON

The Transylvanian Plain, Romania is an important region for agronomic productivity. However, limited soils data and adoption of best management practices can hinder land productivity. Soil temperatures of the Transylvanian Plain were evaluated using a set of twenty datalogging stations positioned throughout the plain. Soil temperatures were monitored at the surface, 10 cm, 30 cm, and 50 cm, and soil moisture was monitored at 10 cm. Pedons were excavated, described, and sampled for physicochemical analysis. Preliminary results indicate that most soils of the Transylvanian Plain will have a mesic temperature regime. However, differences in seasonal warming and cooling trends across the plain were noted. These have important implications for planting recommendations. Some soils of the plain were noted to freeze at 50 cm, while others did not. Longer term study of temperatures of the Transylvanian Plain will average out annual variation in soil temperature and evaluate the impact of slope aspect, slope inclination, soil moisture, and physicochemical properties on soil temperatures.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 576 ◽  
Author(s):  
Adrián López-Ballesteros ◽  
Javier Senent-Aparicio ◽  
Raghavan Srinivasan ◽  
Julio Pérez-Sánchez

Best management practices (BMPs) provide a feasible solution for non-point source pollution problems. High sediment and nutrient yields without retention control result in environmental deterioration of surrounding areas. In the present study, the soil and water assessment tool (SWAT) model was developed for El Beal watershed, an anthropogenic and ungauged basin located in the southeast of Spain that drains into a coastal lagoon of high environmental value. The effectiveness of five BMPs (contour planting, filter strips, reforestation, fertilizer application and check dam restoration) was quantified, both individually and in combination, to test their impact on sediment and nutrient reduction. For calibration and validation processes, actual evapotranspiration (AET) data obtained from a remote sensing dataset called Global Land Evaporation Amsterdam Model (GLEAM) were used. The SWAT model achieved good performance in the calibration period, with statistical values of 0.78 for Kling–Gupta efficiency (KGE), 0.81 for coefficient of determination (R2), 0.58 for Nash–Sutcliffe efficiency (NSE) and 3.9% for percent bias (PBIAS), as well as in the validation period (KGE = 0.67, R2 = 0.83, NS = 0.53 and PBIAS = −25.3%). The results show that check dam restoration is the most effective BMP with a reduction of 90% in sediment yield (S), 15% in total nitrogen (TN) and 22% in total phosphorus (TP) at the watershed scale, followed by reforestation (S = 27%, TN = 16% and TP = 20%). All effectiveness values improved when BMPs were assessed in combination. The outcome of this study could provide guidance for decision makers in developing possible solutions for environmental problems in a coastal lagoon.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7093
Author(s):  
Solmaz Rasoulzadeh Gharibdousti ◽  
Gehendra Kharel ◽  
Arthur Stoecker

Best management practices (BMPs) are commonly used to reduce sediment loadings. In this study, we modeled the Fort Cobb Reservoir watershed located in southwestern Oklahoma, USA using the Soil and Water Assessment Tool (SWAT) and evaluated the impacts of five agricultural BMP scenarios on surface runoff, sediment yield, and crop yield. The hydrological model, with 43 sub-basins and 15,217 hydrological response units, was calibrated (1991–2000) and validated (2001–2010) against the monthly observations of streamflow, sediment grab samples, and crop-yields. The coefficient of determination (R2), Nash-Sutcliffe efficiency (NS) and percentage bias (PB) were used to determine model performance with satisfactory values of R2 (0.64 and 0.79) and NS (0.61 and 0.62) in the calibration and validation period respectively for streamflow. We found that contouring practice reduced surface runoff by more than 18% in both conservation tillage and no-till practices for all crops used in this modeling study. In addition, contour farming with either conservation tillage or no-till practice reduced sediment yield by almost half. Compared to the conservation tillage practice, no-till practice decreased sediment yield by 25.3% and 9.0% for cotton and grain sorghum, respectively. Using wheat as cover crop for grain sorghum generated the lowest runoff followed by its rotation with canola and cotton regardless of contouring. Converting all the crops in the watershed into Bermuda grass resulted in significant reduction in sediment yield (72.5–96.3%) and surface runoff (6.8–38.5%). The model can be used to provide useful information for stakeholders to prioritize ecologically sound and feasible BMPs at fields that are capable of reducing sediment yield while increasing crop yield.


2021 ◽  
Vol 930 (1) ◽  
pp. 012068
Author(s):  
A A Rofikha ◽  
Y Saputra ◽  
F A Islami

Abstract Erosion and sedimentation problems caused by human activities disturbed the primary conditions of the watershed. This situation was also influenced by significant hydrometeorological shifts and high rainfall, which increased soil erosion. These inclement watershed conditions resulted in high sedimentation rates and caused severe problems for the quality and quantity of water in the reservoir. This study aims to solve the Sermo watershed problems by calculating the value of erosion and sedimentation, then providing a solution to deal with these problems in the form of Best Management Practices (BMP). This research used a USLE method to calculate the erosion and sedimentation rate. The calculation results showed that 40.86% of Sermo Reservoir within 809.12 hectares was classified as a high level of erosion. Further recommendations for overcoming this condition were made by referring to BMP for erosion and sediment control, including structures and soil water conservation. Further recommendations to address this condition were made regarding BMP for controlling water, maintaining soil stability, controlling sedimentation, and managing and maintaining optimal watersheds.


Sign in / Sign up

Export Citation Format

Share Document