scholarly journals Microstructural and Process Parameters of aluminium alloys Using FSW

2021 ◽  
Vol 23 (12) ◽  
pp. 491-510
Author(s):  
Nuzhat Nazir ◽  
◽  
Manish Kumar Gupta ◽  

Friction stir welding (FSW) has become a popular method for connecting low weight metals. Material joining occurs in the solid state in FSW. Inserting a rotating tool travelling over the faying surfaces of the material to be bonded is used to complete the procedure. It produces practically defect-free welds with little distortion and a fine grain structure. However, the welding mechanism and process parametric combination for welds with consistent and dependable outcomes are not well understood. The thesis details the experimental efforts made to suggest an optimal combination of parameters with simple tool geometry for FSW at greater linear speeds. The materials for research were two precipitation hardenable aluminium alloys: 6mm thick 2219-T87 and 5083H321. The influence of process parameters on weld microstructural changes and defect development was also examined. The optimal combination of process parameters for the FSW of aluminium alloys was proposed, and the most relevant parameter for weld strength and quality was discovered.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1157
Author(s):  
Danka Labus Zlatanovic ◽  
Sebastian Balos ◽  
Jean Pierre Bergmann ◽  
Stefan Rasche ◽  
Milan Pecanac ◽  
...  

Friction stir spot welding is an emerging spot-welding technology that offers opportunities for joining a wide range of materials with minimum energy consumption. To increase productivity, the present work addresses production challenges and aims to find solutions for the lap-welding of multiple ultrathin sheets with maximum productivity. Two convex tools with different edge radii were used to weld four ultrathin sheets of AA5754-H111 alloy each with 0.3 mm thickness. To understand the influence of tool geometries and process parameters, coefficient of friction (CoF), microstructure and mechanical properties obtained with the Vickers microhardness test and the small punch test were analysed. A scanning acoustic microscope was used to assess weld quality. It was found that the increase of tool radius from 15 to 22.5 mm reduced the dwell time by a factor of three. Samples welded with a specific tool were seen to have no delamination and improved mechanical properties due to longer stirring time. The rotational speed was found to be the most influential parameter in governing the weld shape, CoF, microstructure, microhardness and weld efficiency. Low rotational speeds caused a 14.4% and 12.8% improvement in joint efficiency compared to high rotational speeds for both tools used in this investigation.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4375
Author(s):  
David G. Andrade ◽  
Sree Sabari ◽  
Carlos Leitão ◽  
Dulce M. Rodrigues

Friction Stir Spot Welding (FSSW) is assumed as an environment-friendly technique, suitable for the spot welding of several materials. Nevertheless, it is consensual that the temperature control during the process is not feasible, since the exact heat generation mechanisms are still unknown. In current work, the heat generation in FSSW of aluminium alloys, was assessed by producing bead-on-plate spot welds using pinless tools. Coated and uncoated tools, with varied diameters and rotational speeds, were tested. Heat treatable (AA2017, AA6082 and AA7075) and non-heat treatable (AA5083) aluminium alloys were welded to assess any possible influence of the base material properties on heat generation. A parametric analysis enabled to establish a relationship between the process parameters and the heat generation. It was found that for rotational speeds higher than 600 rpm, the main process parameter governing the heat generation is the tool diameter. For each tool diameter, a threshold in the welding temperature was identified, which is independent of the rotational speed and of the aluminium alloy being welded. It is demonstrated that, for aluminium alloys, the temperature in FSSW may be controlled using a suitable combination of rotational speed and tool dimensions. The temperature evolution with process parameters was modelled and the model predictions were found to fit satisfactorily the experimental results.


2017 ◽  
Vol 908 ◽  
pp. 012061 ◽  
Author(s):  
W. M. Syafiq ◽  
M. Afendi ◽  
R. Daud ◽  
M. N. Mazlee ◽  
M. S. Abdul Majid ◽  
...  

2013 ◽  
Vol 7 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Pierpaolo Carlone ◽  
Gaetano S. Palazzo

Friction Stir Welding (FSW) is an innovative solid-state joining process, which is gaining a great deal of attention in several applicative sectors. The opportune definition of process parameters, i.e. minimizing residual stresses, is crucial to improve joint reliability in terms of static and dynamic performance. Longitudinal residual stresses, induced by FSW in AA2024-T3 butt joints, have been inferred by means of a recently developed technique, namely the contour method. Two approaches to stress measurement have been adopted; the former is based on the assumption of uniform material properties, the latter takes into account microstructural effects and material properties variations in the welding zones. The influence of process parameters, namely rotating and welding speeds, on stress distribution is also discussed.


Author(s):  
M.A. Unnikrishnan ◽  
J. Edwin Raja Dhas

The requirement for structural materials with demanding properties is always a major concern among automotive researchers. Magnesium alloys possess the required properties. In this work magnesium alloys, AZ31B and AZ91B were joined by friction stir welding. The influence of process parameters on the weld properties has been studied. The process parameters were tool rotational speed, welding speed, tilt angle. Three different combinations AZ31B-AZ91B, AZ31B-AZ31B and AZ91B-AZ91B were friction stir welded. Non-destructive tests have been performed on the welded joints as the primary analysis. After mechanical testing, optical microscopic examination comprising of macrostructure analysis, microstructure analysis and SEM analysis were carried out on selected specimens and the results are formulated. The corrosion behavior of Mg alloys has been tested using a salt spray test. The thermal behavior was studied using thermogravimetric and differential thermal analysis. The joints were friction stir welded with maximum efficiency where grain refinement was observed in the weld microstructure of dissimilar alloys and the elongated grains was recrystallized. This paper primarily focuses on the microstructural aspects, corrosion performances and TG/DTA analysis.


Sign in / Sign up

Export Citation Format

Share Document