scholarly journals Language Characteristics Supporting Early Alzheimer's Diagnosis through Machine Learning - A Literature Review

2021 ◽  
Vol 10 (1) ◽  
pp. 5-23
Author(s):  
Fabian Thaler ◽  
Heiko Gewald

Alzheimer's dementia (AD) is the most common incurable neurodegenerative disease worldwide. Apart from memory loss, AD leads to speech disorders. Timely diagnosis is crucial to halt the progression of the disease. However, current diagnostic procedures are costly, invasive, and distressing. Early-stage AD manifests itself in speech disorders, which implies examining those. Machine Learning (ML) represents a promising instrument in this context. Nevertheless, no genuine consensus on the language characteristics to be analyzed exists. To counteract this deficit and provide topic-related researchers with a better basis for decision-making, we present, based on a literature review, favourable speech characteristics for the appliance toward AD detection via ML. Research trends to apply spontaneous speech, gained from image descriptions, as analysis basis, and points out that the combined use of acoustic, linguistic, and demographic features positively influences recognition accuracy. In total, we have identified 97 overarching acoustic, linguistic and demographic features.

2020 ◽  
Vol 7 (2) ◽  
pp. 129-134
Author(s):  
Takudzwa Fadziso

As with the other sectors, the health sector also has a huge amount of data that should be utilized for handling the different diseases. One of the increasing diseases is diabetes that can be handled if it is detected at an early stage. For this purpose, the algorithms of ML can be used. We have discussed the various algorithms of ML and the attributes that can be used to train these algorithms for detecting diabetes.


2019 ◽  
Vol 8 (3) ◽  
pp. 7964-7967

Alzheimer’s is a neurodegenerative disease which can eventually leads to dementia. Mostly occurring in elderly people over the age of 65, it is hard to detect and diagnose correctly. Most common symptoms include memory loss and slow deterioration of cognitive functions. Given that these symptoms are seen often in old people, this hinders the detection of Alzheimer’s disease (AD). Alzheimer’s is currently incurable, but detection of the disease during its early stage is often beneficial to the patient, since there are treatments which can considerably improve the quality of life of the patient. However this can only be done if the patient has been diagnosed at a stage before any permanent brain damage has been done. Most of the current methods for detecting and diagnosing AD are not good enough. It is the need of the hour to develop better and early diagnostic tools. With the improvements in the field of machine learning, we now have the tools needed to drastically improve detection of Alzheimer’s. We examine various machine learning methods and algorithms to find a method which can boost the chances of detecting the disease. We will use the following algorithms: Decision Tree, SVM, Random Forest and Adaboost. The dataset being used is the longitudinal MRI data available included in the OASIS dataset. We will use the aforementioned algorithms on the dataset and compare the accuracies achieved to find an optimal.


Author(s):  
Chenglong Xie ◽  
Xu-Xu Zhuang ◽  
Zhangming Niu ◽  
Ruixue Ai ◽  
Sofie Lautrup ◽  
...  

AbstractA reduced removal of dysfunctional mitochondria is common to aging and age-related neurodegenerative pathologies such as Alzheimer’s disease (AD). Strategies for treating such impaired mitophagy would benefit from the identification of mitophagy modulators. Here we report the combined use of unsupervised machine learning (involving vector representations of molecular structures, pharmacophore fingerprinting and conformer fingerprinting) and a cross-species approach for the screening and experimental validation of new mitophagy-inducing compounds. From a library of naturally occurring compounds, the workflow allowed us to identify 18 small molecules, and among them two potent mitophagy inducers (Kaempferol and Rhapontigenin). In nematode and rodent models of AD, we show that both mitophagy inducers increased the survival and functionality of glutamatergic and cholinergic neurons, abrogated amyloid-β and tau pathologies, and improved the animals’ memory. Our findings suggest the existence of a conserved mechanism of memory loss across the AD models, this mechanism being mediated by defective mitophagy. The computational–experimental screening and validation workflow might help uncover potent mitophagy modulators that stimulate neuronal health and brain homeostasis.


2018 ◽  
Vol 1 (1) ◽  
pp. 236-247
Author(s):  
Divya Srivastava ◽  
Rajitha B. ◽  
Suneeta Agarwal

Diseases in leaves can cause the significant reduction in both quality and quantity of agricultural production. If early and accurate detection of disease/diseases in leaves can be automated, then the proper remedy can be taken timely. A simple and computationally efficient approach is presented in this paper for disease/diseases detection on leaves. Only detecting the disease is not beneficial without knowing the stage of disease thus the paper also determine the stage of disease/diseases by quantizing the affected of the leaves by using digital image processing and machine learning. Though there exists a variety of diseases on leaves, but the bacterial and fungal spots (Early Scorch, Late Scorch, and Leaf Spot) are the most prominent diseases found on leaves. Keeping this in mind the paper deals with the detection of Bacterial Blight and Fungal Spot both at an early stage (Early Scorch) and late stage (Late Scorch) on the variety of leaves. The proposed approach is divided into two phases, in the first phase, it identifies one or more disease/diseases existing on leaves. In the second phase, amount of area affected by the disease/diseases is calculated. The experimental results obtained showed 97% accuracy using the proposed approach.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-31
Author(s):  
Bjarne Pfitzner ◽  
Nico Steckhan ◽  
Bert Arnrich

Data privacy is a very important issue. Especially in fields like medicine, it is paramount to abide by the existing privacy regulations to preserve patients’ anonymity. However, data is required for research and training machine learning models that could help gain insight into complex correlations or personalised treatments that may otherwise stay undiscovered. Those models generally scale with the amount of data available, but the current situation often prohibits building large databases across sites. So it would be beneficial to be able to combine similar or related data from different sites all over the world while still preserving data privacy. Federated learning has been proposed as a solution for this, because it relies on the sharing of machine learning models, instead of the raw data itself. That means private data never leaves the site or device it was collected on. Federated learning is an emerging research area, and many domains have been identified for the application of those methods. This systematic literature review provides an extensive look at the concept of and research into federated learning and its applicability for confidential healthcare datasets.


2021 ◽  
pp. 097215092098485
Author(s):  
Sonika Gupta ◽  
Sushil Kumar Mehta

Data mining techniques have proven quite effective not only in detecting financial statement frauds but also in discovering other financial crimes, such as credit card frauds, loan and security frauds, corporate frauds, bank and insurance frauds, etc. Classification of data mining techniques, in recent years, has been accepted as one of the most credible methodologies for the detection of symptoms of financial statement frauds through scanning the published financial statements of companies. The retrieved literature that has used data mining classification techniques can be broadly categorized on the basis of the type of technique applied, as statistical techniques and machine learning techniques. The biggest challenge in executing the classification process using data mining techniques lies in collecting the data sample of fraudulent companies and mapping the sample of fraudulent companies against non-fraudulent companies. In this article, a systematic literature review (SLR) of studies from the area of financial statement fraud detection has been conducted. The review has considered research articles published between 1995 and 2020. Further, a meta-analysis has been performed to establish the effect of data sample mapping of fraudulent companies against non-fraudulent companies on the classification methods through comparing the overall classification accuracy reported in the literature. The retrieved literature indicates that a fraudulent sample can either be equally paired with non-fraudulent sample (1:1 data mapping) or be unequally mapped using 1:many ratio to increase the sample size proportionally. Based on the meta-analysis of the research articles, it can be concluded that machine learning approaches, in comparison to statistical approaches, can achieve better classification accuracy, particularly when the availability of sample data is low. High classification accuracy can be obtained with even a 1:1 mapping data set using machine learning classification approaches.


Sign in / Sign up

Export Citation Format

Share Document