scholarly journals Supervised Machine Learning Algorithms For Early Diagnosis Of Alzheimer’s Disease

2019 ◽  
Vol 8 (3) ◽  
pp. 7964-7967

Alzheimer’s is a neurodegenerative disease which can eventually leads to dementia. Mostly occurring in elderly people over the age of 65, it is hard to detect and diagnose correctly. Most common symptoms include memory loss and slow deterioration of cognitive functions. Given that these symptoms are seen often in old people, this hinders the detection of Alzheimer’s disease (AD). Alzheimer’s is currently incurable, but detection of the disease during its early stage is often beneficial to the patient, since there are treatments which can considerably improve the quality of life of the patient. However this can only be done if the patient has been diagnosed at a stage before any permanent brain damage has been done. Most of the current methods for detecting and diagnosing AD are not good enough. It is the need of the hour to develop better and early diagnostic tools. With the improvements in the field of machine learning, we now have the tools needed to drastically improve detection of Alzheimer’s. We examine various machine learning methods and algorithms to find a method which can boost the chances of detecting the disease. We will use the following algorithms: Decision Tree, SVM, Random Forest and Adaboost. The dataset being used is the longitudinal MRI data available included in the OASIS dataset. We will use the aforementioned algorithms on the dataset and compare the accuracies achieved to find an optimal.

Author(s):  
Adwait Patil

Abstract: Alzheimer’s disease is one of the neurodegenerative disorders. It initially starts with innocuous symptoms but gradually becomes severe. This disease is so dangerous because there is no treatment, the disease is detected but typically at a later stage. So it is important to detect Alzheimer at an early stage to counter the disease and for a probable recovery for the patient. There are various approaches currently used to detect symptoms of Alzheimer’s disease (AD) at an early stage. The fuzzy system approach is not widely used as it heavily depends on expert knowledge but is quite efficient in detecting AD as it provides a mathematical foundation for interpreting the human cognitive processes. Another more accurate and widely accepted approach is the machine learning detection of AD stages which uses machine learning algorithms like Support Vector Machines (SVMs) , Decision Tree , Random Forests to detect the stage depending on the data provided. The final approach is the Deep Learning approach using multi-modal data that combines image , genetic data and patient data using deep models and then uses the concatenated data to detect the AD stage more efficiently; this method is obscure as it requires huge volumes of data. This paper elaborates on all the three approaches and provides a comparative study about them and which method is more efficient for AD detection. Keywords: Alzheimer’s Disease (AD), Fuzzy System , Machine Learning , Deep Learning , Multimodal data


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 778
Author(s):  
Nitsa J. Herzog ◽  
George D. Magoulas

Early identification of degenerative processes in the human brain is considered essential for providing proper care and treatment. This may involve detecting structural and functional cerebral changes such as changes in the degree of asymmetry between the left and right hemispheres. Changes can be detected by computational algorithms and used for the early diagnosis of dementia and its stages (amnestic early mild cognitive impairment (EMCI), Alzheimer’s Disease (AD)), and can help to monitor the progress of the disease. In this vein, the paper proposes a data processing pipeline that can be implemented on commodity hardware. It uses features of brain asymmetries, extracted from MRI of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, for the analysis of structural changes, and machine learning classification of the pathology. The experiments provide promising results, distinguishing between subjects with normal cognition (NC) and patients with early or progressive dementia. Supervised machine learning algorithms and convolutional neural networks tested are reaching an accuracy of 92.5% and 75.0% for NC vs. EMCI, and 93.0% and 90.5% for NC vs. AD, respectively. The proposed pipeline offers a promising low-cost alternative for the classification of dementia and can be potentially useful to other brain degenerative disorders that are accompanied by changes in the brain asymmetries.


2021 ◽  
Vol 9 (1) ◽  
pp. 519-525
Author(s):  
B. Hemalatha, Dr. M. Renukadevi

Alzheimer's Disease (AD) is referred to as one of the highest non-unusual neurodegenerative disorders that inflict eternal harm to the memory-associated brain cells and wonder skills. There is a 99.6 percent failure rate in clinical trials of Alzheimer's disease pills, perhaps due to the fact that AD sufferers cannot be without early-stage complications. This observation analyzed machine learning knowledge of strategies to use empirical statistics to forecast the progression of AD in the years of fate. Diagnosis of AD is often difficult, particularly at an early stage in the disease system, due to the degree of mild cognitive impairment (MCI). However, it is at this point where treatment is much more likely to be successful, so there will be great benefits in enhancing the diagnosis process. Research in this area aims to identify the most complex mechanisms directly related to changes in AD. Various imaging methods are used to diagnose AD, and image modes play a key role in the diagnosis of AD. This paper uses a Positron Emission Tomography (PET) image to detect AD early. The PET image is often used to know how organs and tissues function in the human body. This research study analyses prediction approaches using various kinds of machine learning algorithms to solve AD diagnostic problems. Artificial Neural Networks are one of the many algorithms. Modern research has shown that deep learning is a proficient technique for solving numerous problems of image recognition, but most of these published approaches owe their performance to training on a very large number of data samples.


2019 ◽  
Author(s):  
Massimiliano Grassi ◽  
Nadine Rouleaux ◽  
Daniela Caldirola ◽  
David Loewenstein ◽  
Koen Schruers ◽  
...  

ABSTRACTBackgroundDespite the increasing availability in brain health related data, clinically translatable methods to predict the conversion from Mild Cognitive Impairment (MCI) to Alzheimer’s disease (AD) are still lacking. Although MCI typically precedes AD, only a fraction of 20-40% of MCI individuals will progress to dementia within 3 years following the initial diagnosis. As currently available and emerging therapies likely have the greatest impact when provided at the earliest disease stage, the prompt identification of subjects at high risk for conversion to full AD is of great importance in the fight against this disease. In this work, we propose a highly predictive machine learning algorithm, based only on non-invasively and easily in-the-clinic collectable predictors, to identify MCI subjects at risk for conversion to full AD.MethodsThe algorithm was developed using the open dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), employing a sample of 550 MCI subjects whose diagnostic follow-up is available for at least 3 years after the baseline assessment. A restricted set of information regarding sociodemographic and clinical characteristics, neuropsychological test scores was used as predictors and several different supervised machine learning algorithms were developed and ensembled in final algorithm. A site-independent stratified train/test split protocol was used to provide an estimate of the generalized performance of the algorithm.ResultsThe final algorithm demonstrated an AUROC of 0.88, sensitivity of 77.7%, and a specificity of 79.9% on excluded test data. The specificity of the algorithm was 40.2% for 100% sensitivity.DiscussionThe algorithm we developed achieved sound and high prognostic performance to predict AD conversion using easily clinically derived information that makes the algorithm easy to be translated into practice. This indicates beneficial application to improve recruitment in clinical trials and to more selectively prescribe new and newly emerging early interventions to high AD risk patients.


Author(s):  
Yanna Ren ◽  
Weiping Yang ◽  
Xiaoyu Tang ◽  
Fengxia Wu ◽  
Satoshi Takahashi ◽  
...  

Alzheimer's disease, a common form of dementia, is a type of neurodegenerative disease that affects more than 30% of the population older than 85. Clinically, it is characterized as memory loss and cognitive decline. Pathologically, its symptoms include cerebral atrophy, amyloid plaques and NFTs. Generally, the life expectancy is no more than nine years after the definite diagnosis, and life expectancy exceeds 14 years in only 3% of patients. Presently, there is no effective treatment to stop the process; the only measures we can take are to ease or improve symptoms temporarily. Therefore, it is necessary to diagnosis the disease in the early stage, such as through imaging detection via CT, MRI, PET and MSR, or prediction before the disease (genetic examination). However, literature data have supported the notion that Alzheimer's disease patients show cognitive reserve abilities to some degree. In the future, research perspectives may focus on the cognitive training paradigms in compensatory and restorative strategies.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Morshedul Bari Antor ◽  
A. H. M. Shafayet Jamil ◽  
Maliha Mamtaz ◽  
Mohammad Monirujjaman Khan ◽  
Sultan Aljahdali ◽  
...  

Alzheimer’s disease has been one of the major concerns recently. Around 45 million people are suffering from this disease. Alzheimer’s is a degenerative brain disease with an unspecified cause and pathogenesis which primarily affects older people. The main cause of Alzheimer’s disease is Dementia, which progressively damages the brain cells. People lost their thinking ability, reading ability, and many more from this disease. A machine learning system can reduce this problem by predicting the disease. The main aim is to recognize Dementia among various patients. This paper represents the result and analysis regarding detecting Dementia from various machine learning models. The Open Access Series of Imaging Studies (OASIS) dataset has been used for the development of the system. The dataset is small, but it has some significant values. The dataset has been analyzed and applied in several machine learning models. Support vector machine, logistic regression, decision tree, and random forest have been used for prediction. First, the system has been run without fine-tuning and then with fine-tuning. Comparing the results, it is found that the support vector machine provides the best results among the models. It has the best accuracy in detecting Dementia among numerous patients. The system is simple and can easily help people by detecting Dementia among them.


Recent research in computational engineering have evidenced the design and development numerous intelligent models to analyze medical data and derive inferences related to early diagnosis and prediction of disease severity. In this context, prediction and diagnosis of fatal neurodegenerative diseases that comes under the class of dementia from medical image data is considered as the challenging area of research for many researchers. Recently Alzheimer’s disease is considered as major category of dementia that affects major population. Despite of the development of numerous machine learning models for early diagnosis of Alzheimer’s disease, it is observed that there is a lot more scope of research. Addressing the same, this article presents a systematic literature review of machine learning techniques developed for early diagnosis of Alzheimer’s disease. Furthermore this article includes major categories of machine learning algorithms that include artificial neural networks, Support vector machines and Deep learning based ensemble models that helps the budding researchers to explore the scope of research in predicting Alzheimer’s disease. Implementation results depict the comparative analysis of state of art machine learning mechanisms.


2020 ◽  
Vol 10 (11) ◽  
pp. 879
Author(s):  
Angela Lombardi ◽  
Nicola Amoroso ◽  
Domenico Diacono ◽  
Alfonso Monaco ◽  
Giancarlo Logroscino ◽  
...  

Modeling disease progression through the cognitive scores has become an attractive challenge in the field of computational neuroscience due to its importance for early diagnosis of Alzheimer’s disease (AD). Several scores such as Alzheimer’s Disease Assessment Scale cognitive total score, Mini Mental State Exam score and Rey Auditory Verbal Learning Test provide a quantitative assessment of the cognitive conditions of the patients and are commonly used as objective criteria for clinical diagnosis of dementia and mild cognitive impairment (MCI). On the other hand, connectivity patterns extracted from diffusion tensor imaging (DTI) have been successfully used to classify AD and MCI subjects with machine learning algorithms proving their potential application in the clinical setting. In this work, we carried out a pilot study to investigate the strength of association between DTI structural connectivity of a mixed ADNI cohort and cognitive spectrum in AD. We developed a machine learning framework to find a generalized cognitive score that summarizes the different functional domains reflected by each cognitive clinical index and to identify the connectivity biomarkers more significantly associated with the score. The results indicate that the efficiency and the centrality of some regions can effectively track cognitive impairment in AD showing a significant correlation with the generalized cognitive score (R = 0.7).


Sign in / Sign up

Export Citation Format

Share Document