scholarly journals Embodied Carbon and Construction Cost Differences between Hong Kong and Melbourne Buildings

2018 ◽  
Vol 18 (4) ◽  
pp. 84-102 ◽  
Author(s):  
Craig Langston ◽  
Edwin H.W. Chan ◽  
Esther H.K. Yung

Limiting the amount of embodied carbon in buildings can help minimize the damaging impacts of global warming through lower upstream emission of CO2. This study empirically investigates the embodied carbon footprint of new-build and refurbished buildings in both Hong Kong and Melbourne to determine the embodied carbon profile and its relationship to both embodied energy and construction cost. The Hong Kong findings suggest that mean embodied carbon for refurbished buildings is 33-39% lower than new-build projects, and the cost for refurbished buildings is 22-50% lower than new-build projects (per square metre of floor area). The Melbourne findings, however, suggest that mean embodied carbon for refurbished buildings is 4% lower than new-build projects, and the cost for refurbished buildings is 24% higher than new-build projects (per square metre of floor area). Embodied carbon ranges from 645-1,059 kgCO2e/m2 for new-build and 294-655 kgCO2e/m2 for refurbished projects in Hong Kong, and 1,138-1,705 kgCO2e/m2 for new-build and 900-1,681 kgCO2e/m2 for refurbished projects in Melbourne. The reasons behind these locational discrepancies are explored and critiqued. Overall, a very strong linear relationship between embodied energy and construction cost in both cities was found and can be used to predict the former, given the latter.

2018 ◽  
Vol 10 (9) ◽  
pp. 3229 ◽  
Author(s):  
Craig Langston ◽  
Edwin Chan ◽  
Esther Yung

Refurbishing buildings helps reduce waste, and limiting the amount of embodied carbon in buildings helps minimize the damaging impacts of climate change through lower CO2 emissions. The analysis of embodied carbon is based on the concept of life cycle assessment (LCA). LCA is a systematic tool to evaluate the environmental impacts of a product, technology, or service through all stages of its life cycle. This study investigates the embodied carbon footprint of both new-build and refurbished buildings to determine the embodied carbon profile and its relationship to both embodied energy and construction cost. It recognizes that changes in the fuel mix for electricity generation play an important role in embodied carbon impacts in different countries. The empirical findings for Hong Kong suggest that mean embodied carbon for refurbished buildings is 33–39% lower than new-build projects, and the cost for refurbished buildings is 22–50% lower than new-build projects (per square meter of floor area). Embodied carbon ranges from 645–1059 kgCO2e/m2 for new-build and 294–655 kgCO2e/m2 for refurbished projects, which is in keeping with other studies outside Hong Kong. However, values of embodied carbon and cost for refurbished projects in this study have a higher coefficient of variation than their new-build counterparts. It is argued that it is preferable to estimate embodied energy and then convert to embodied carbon (rather than estimate embodied carbon directly), as carbon is both time and location specific. A very strong linear relationship is also observed between embodied energy and construction cost that can be used to predict the former, given the latter. This study provides a framework whereby comparisons can be made between new-build and refurbished projects on the basis of embodied carbon and related construction cost differentials into the future, helping to make informed decisions about which strategy to pursue.


2021 ◽  
Vol 13 (5) ◽  
pp. 2491
Author(s):  
Alena Tažiková ◽  
Zuzana Struková ◽  
Mária Kozlovská

This study deals with small investors’ demands on thermal insulation systems when choosing the most suitable solution for a family house. By 2050, seventy percent of current buildings, including residential buildings, are still expected to be in operation. To reach carbon neutrality, it is necessary to reduce operational energy consumption and thus reduce the related cost of building operations and the cost of the life cycle of buildings. One solution is to adapt envelopes of buildings by proper insulation solutions. To choose an optimal thermal insulation system that will reduce energy consumption of building, it is necessary to consider the environmental cost of insulation materials in addition to the construction cost of the materials. The environmental cost of a material depends on the carbon footprint from the initial origin of the material. This study presents the results of a multi-criteria decision-making analysis, where five different contractors set the evaluation criteria for selection of the optimal thermal insulation system. In their decision-making, they involved the requirements of small investors. The most common requirements were selected: the construction cost, the construction time (represented by the total man-hours), the thermal conductivity coefficient, the diffusion resistance factor, and the reaction to fire. The confidences of the criteria were then determined with the help of the pairwise comparison method. This was followed by multi-criteria decision-making using the method of index coefficients, also known as the method of basic variant. The multi-criteria decision-making included thermal insulation systems based on polystyrene, mineral wool, thermal insulation plaster, and aerogels’ nanotechnology. As a result, it was concluded that, currently, in Slovakia, small investors emphasize the cost of material and the coefficient of thermal conductivity and they do not care as much about the carbon footprint of the material manufacturing, the importance of which is mentioned in this study.


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 888
Author(s):  
Leopoldo Sdino ◽  
Andrea Brambilla ◽  
Marta Dell’Ovo ◽  
Benedetta Sdino ◽  
Stefano Capolongo

The need for 24/7 operation, and the increasing requests of high-quality healthcare services contribute to framing healthcare facilities as a complex topic, also due to the changing and challenging environment and huge impact on the community. Due to its complexity, it is difficult to properly estimate the construction cost in a preliminary phase where easy-to-use parameters are often necessary. Therefore, this paper aims to provide an overview of the issue with reference to the Italian context and proposes an estimation framework for analyzing hospital facilities’ construction cost. First, contributions from literature reviews and 14 case studies were analyzed to identify specific cost components. Then, a questionnaire was administered to construction companies and experts in the field to obtain data coming from practical and real cases. The results obtained from all of the contributions are an overview of the construction cost components. Starting from the data collected and analyzed, a preliminary estimation tool is proposed to identify the minimum and maximum variation in the cost when programming the construction of a hospital, starting from the feasibility phase or the early design stage. The framework involves different factors, such as the number of beds, complexity, typology, localization, technology degree and the type of maintenance and management techniques. This study explores the several elements that compose the cost of a hospital facility and highlights future developments including maintenance and management costs during hospital facilities’ lifecycle.


2000 ◽  
Vol 3 (1) ◽  
Author(s):  
Matthew Eichner ◽  
Mark McClellan ◽  
David A. Wise

We are engaged in a long-term project to analyze the determinants of health care cost differences across firms. An important first step is to summarize the nature of expenditure differences across plans. The goal of this article is to develop methods for identifying and quantifying those factors that account for the wide differences in health care expenditures observed across plans.We consider eight plans that vary in average expenditure for individuals filing claims, from a low of $1,645 to a high of $2,484. We present a statistically consistent method for decomposing the cost differences across plans into component parts based on demographic characteristics of plan participants, the mix of diagnoses for which participants are treated, and the cost of treatment for particular diagnoses. The goal is to quantify the contribution of each of these components to the difference between average cost and the cost in a given firm. The demographic mix of plan enrollees accounts for wide differnces in cost ($649). Perhaps the most noticeable feature of the results is that, after adjusting for demographic mix, the difference in expenditures accounted for by the treatment costs given diagnosis ($807) is almost as wide as the unadjusted range in expenditures ($838). Differences in cost due to the different illnesses that are treated, after adjusting for demographic mix, also accounts for large differences in cost ($626). These components of cost do not move together; for example, demographic mix may decrease expenditure under a particular plan while the diagnosis mix may increase costs.Our hope is that understanding the reasons for cost differences across plans will direct more focused attention to controlling costs. Indeed, this work is intended as an important first step toward that goal.


Author(s):  
Khee Giap Tan ◽  
Nguyen Trieu Duong Luu ◽  
Le Phuong Anh Nguyen

Purpose Cost of living is an important consideration for the decision-making of expatriates and investment decisions of businesses. As competition between cities for talent and capital becomes global instead of national, the need for timely and internationally comparable information on global cities’ cost of living increases. While commercial research houses frequently publish cost of living surveys, these reports can be lacking in terms of scientific rigour. In this context, this paper aims to contribute to the literature by formulating a comprehensive and rigorous methodology to compare the cost of living for expatriates in 103 world’s major cities. Design/methodology/approach A cost of living index for expatriates composed of the ten consumption categories is constructed. The results from the study covers a study period from 2005 to 2014 in 103 cities. More than 280 individual prices of 165 goods and services have been compiled for each city in the calculation of the cost of living index for expatriates. New York has been chosen as the base city for the study, with other cities being benchmarked against it. A larger cost of living index for expatriates implies that the city is more expensive for expatriates to live in and vice versa. Findings While the authors generate the cost of living rankings for expatriates for 103 cities worldwide, in this paper, the authors focus on five key cities, namely, London, Hong Kong, Singapore, Tokyo and Zurich, as they are global financial centres. In 2013, the latest year for which data are available, Zurich was the most expensive for expatriates among the five cities, followed by Singapore, Tokyo, London and Hong Kong. These results pertain to the cost of living for expatriates, and cities compare very differently in terms of cost of living for ordinary residents, as ordinary residents follow different consumption patterns from expatriates. Originality/value Cost of living in the destination city is a major consideration for professionals who look to relocate, and organisations factor such calculations in their decisions to post employees overseas and design commensurate compensation packages. This paper develops a comprehensive and rigorous methodology for measuring and comparing cost of living for expatriates around the world. The value-addition lies in the fact that the authors are able to differentiate between expatriates and ordinary residents, which has not been done in the existing literature. They use higher quality data and generate an index that is not sensitive to the choice of base city.


2001 ◽  
Vol 19 (9) ◽  
pp. 947-953 ◽  
Author(s):  
Anthony T.C. Chan ◽  
Philip Jacobs ◽  
Winnie Yeo ◽  
Maria Lai ◽  
Clarke B. Hazlett ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wennan Zhang ◽  
Kai Kang ◽  
Ray Y. Zhong

PurposeThis paper proposes an evaluation model for prefabricated construction to guide a supply chain with controllable costs. Prefabricated construction is prevalent due to area limitations. Nevertheless, the development is limited by budget control and identifying the factors affecting cost. The degree of close collaboration in the supply chain is closely interconnected with cost performance that includes direct and indirect factors. This paper not only quantizes these factors but also distinguishes the degree of influence of various factors.Design/methodology/approachSystem dynamics is applied to simulate and analyze the construction cost factors through Vensim software. It can also clarify the relationship between cost and other influencing factors. The input data are collected from an Internet of Things (IoT)-enabled system under a Building Information Modeling (BIM) system and Hong Kong government reports.FindingsSimulation results indicate that prefabricated construction cost is mainly influenced by government promotion degree (GPD), working pressure from on-site construction (WPOSC), prefab quality (PQ), load-bearing capacity per vehicle (LBPV) and mold quality (MQ). However, it is more sensitive toward GPD, which indicates that the government should take measures to promote this construction technology. On-site worker management is also essential for the assembly process and indirectly influences the construction cost.Research limitations/implicationsThis paper quantifies indirect influential factors to clarify the specific features for prefabricated construction. The investigated factors are limited.Practical implicationsThe contractor can identify all factors and classify the levels of influence to make decisions under the supply chain system boundary.Social implicationsThe input data are collected from an IoT-enabled system under a BIM system and Hong Kong government reports. Thus, the relationship between construction cost influential factors can be investigated.Originality/valueThis paper quantifies indirect influencing factors and clarifies the specific features in prefabricated construction. The contractor could identify these factors to make decisions and classify the levels of influence under the supply chain system boundary.


2021 ◽  
Author(s):  
Michael Gryniuk ◽  
Dirk Kestner ◽  
Luke Lombardi ◽  
Megan Stringer ◽  
Mark Webster ◽  
...  

<p>Achieving reductions to embodied carbon, the global warming potential emissions due to the production of materials, is an essential component to meeting science-based climate targets. Studies have shown that a significant portion of embodied emissions within the built environment are due to structural materials. However, many structural engineers are, not only uneducated in the concept of embodied carbon, but also not aware of the role their decisions can make in addressing climate change. This is further exacerbated by a profession that does not have sufficient structural system embodied carbon benchmark information to make important and informed early design decisions. This required the collaborative development of a structural engineering commitment program, SE 2050, that is supported by leading professional organizations to spur the education and transformation of the profession.</p>


2014 ◽  
Vol 30 (3) ◽  
pp. 325-332 ◽  
Author(s):  
Hema Mistry

Objectives: In economic evaluations of healthcare technologies, situations arise where data are not randomized and numbers are small. For this reason, obtaining reliable cost estimates of such interventions may be difficult. This study explores two approaches in obtaining cost estimates for pregnant women screened for a fetal cardiac anomaly.Methods: Two methods to reduce selection bias in health care: regression analyses and propensity scoring methods were applied to the total mean costs of pregnancy for women who received specialist cardiac advice by means of two referral modes: telemedicine and direct referral.Results: The observed total mean costs of pregnancy were higher for the telemedicine group than the direct referral group (4,918 versus 4,311 GBP). The regression model found that referral mode was not a significant predictor of costs and the cost difference between the two groups was reduced from 607 to 94 GBP. After applying the various propensity score methods, the groups were balanced in terms of sizes and compositions; and again the cost differences between the two groups were smaller ranging from -62 (matching “by hand”) to 333 GBP (kernel matching).Conclusions: Regression analyses and propensity scoring methods applied to the dataset may have increased the homogeneity and reduced the variance in the adjusted costs; that is, these methods have allowed the observed selection bias to be reduced. I believe that propensity scoring methods worked better for this dataset, because after matching the two groups were similar in terms of background characteristics and the adjusted cost differences were smaller.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Deepak Bansal ◽  
V. K. Minocha ◽  
Arvinder Kaur ◽  
Vaidehi A. Dakwale ◽  
R. V. Ralegaonkar

Embodied energy and cost of construction of any building depends upon the consumption of resources, more specifically construction materials. In housing clusters, the spaces provided for horizontal and vertical circulation of occupants such as corridors and contribute in the built-up area of individual unit without any increase in the usable/carpet area. Thus, an efficient architectural planning of common circulation spaces plays a major role in lowering the built-up-to-carpet area ratio of individual housing unit in clusters. This may, thus, result in lesser embodied energy and maximum area availability for occupant usage. In the present study, 30 clusters of Indian affordable housing units (IAHUs) of similar typology and different architectural designs are analyzed. The built-up and carpet area of each IAHU are estimated, and the ratio of the built-up to carpet area is calculated. Detailed estimates of construction materials for each IAHU is prepared, and cost of construction and embodied energy is calculated. The calculations of embodied energy and construction cost are done for major construction materials, viz., cement, steel, bricks, sand, and coarse aggregate and compared with different built-up-to-carpet area ratio. The study of IAHUs concludes that a variation of 1.30 to 1.62 in the built-up area-to-carpet area ratio results in variation in construction cost (INR 13,425.00 to 20,138.00 per m2 carpet area) and embodied energy (4–6.5 GJ per m2 carpet area). Analysis suggests that the IAHU with a lower built-up-to-carpet area ratio exhibits reduction in the cost of construction and embodied energy simultaneously. Thus, an efficient architectural design plays a major role in improving the sustainability of IAHUs and built-up-to-carpet area ratio is an important indicator of sustainability.


Sign in / Sign up

Export Citation Format

Share Document