scholarly journals Life cycle carbon emissions and comparative evaluation of selected open source UK embodied carbon counting tools

2019 ◽  
Vol 19 (2) ◽  
Author(s):  
Damilola Ekundayo ◽  
Solomon Olusola Babatunde ◽  
Aisha Ekundayo ◽  
Srinath Perera ◽  
Chika Udeaja

Life cycle carbon emissions (LCO2), made up of operational and embodied carbon, have become a major metric of building environmental performance and energy efficiency. Whilst there are now standard methods for operational carbon assessment due to its significance in LCO2, there is still less emphasis on embodied carbon counting. However, the relative contribution of embodied carbon is on the rise as buildings become increasingly energy efficient. Following the rule that only something which is measurable is manageable, it is essential that we are able to accurately count embodied carbon. This study therefore reviews the concept of LCO2 in buildings and further investigates the open source UK tools for embodied carbon counting. A comparative evaluation case study, which validates an earlier review, showed that there is no logic and consistency in the carbon figures produced by embodied carbon counting tools. This is mainly due to different system boundaries, varying underlying assumptions and methodological differences in calculation. The findings suggest that an industry-agreed data structure and common methodology is needed for embodied carbon counting. Generally, the study provides insights into the use and capabilities of the identified open source UK embodied carbon counting tools, and is relevant to the on-going debate about carbon regulation.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1172
Author(s):  
Hafiz Haq ◽  
Petri Välisuo ◽  
Seppo Niemi

Industrial symbiosis networks conventionally provide economic and environmental benefits to participating industries. However, most studies have failed to quantify waste management solutions and identify network connections in addition to methodological variation of assessments. This study provides a comprehensive model to conduct sustainable study of industrial symbiosis, which includes identification of network connections, life cycle assessment of materials, economic assessment, and environmental performance using standard guidelines from the literature. Additionally, a case study of industrial symbiosis network from Sodankylä region of Finland is implemented. Results projected an estimated life cycle cost of €115.20 million. The symbiotic environment would save €6.42 million in waste management cost to the business participants in addition to the projected environmental impact of 0.95 million tonne of CO2, 339.80 tonne of CH4, and 18.20 tonne of N2O. The potential of further cost saving with presented optimal assessment in the current architecture is forecast at €0.63 million every year.


2021 ◽  
Vol 163 ◽  
pp. 1523-1535
Author(s):  
José Alfonso Martillo Aseffe ◽  
Aldemar Martínez González ◽  
René Lesme Jaén ◽  
Electo Eduardo Silva Lora

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Mansour Alsaleh ◽  
Noura Alomar ◽  
Monirah Alshreef ◽  
Abdulrahman Alarifi ◽  
AbdulMalik Al-Salman

The widespread adoption of web vulnerability scanners and the differences in the functionality provided by these tool-based vulnerability detection approaches increase the demand for testing their detection effectiveness. Despite the advantages of dynamic testing approaches, the literature lacks studies that systematically evaluate the performance of open source web vulnerability scanners. The main objectives of this study are to assess the performance of open source scanners from multiple perspectives and to examine their detection capability. This paper presents the results of a comparative evaluation of the security features as well as the performance of four web vulnerability detection tools. We followed this comparative assessment with a case study in which we evaluate the level of agreement between the results reported by two open source web vulnerability scanners. Given that the results of our comparative evaluation did not show significant performance differences among the scanners while the results of the conducted case study revealed high level of disagreement between the reports generated by different scanners, we conclude that the inconsistencies between the reports generated by different scanners might not necessarily correlate with their performance properties. We also present some recommendations for helping developers of web vulnerabilities scanners to improve their tools’ capabilities.


2018 ◽  
Author(s):  
Alvaro Ortiz-Troncoso

Open source projects may face a forking situation at some point during their life-cycle. The traditional view is that forks are a waste of project resources and should be avoided. However, in a wider technological and organisational context, forks can be a way to foster the creation of a software ecosystem. Either way, forking is explicitly allowed by open source licenses. Notwithstanding, methods for quantifying the evolution of forks are currently scarce. The present work attempts to answer the question whether a real-life project has forked. It does so by considering code and organisational characteristics of the project, and analysing these characteristics by applying methods ported from biological phylogenetics. After finding that the project is forked, implications for project governance are discussed.


2021 ◽  
Author(s):  
Hayley Cormick

This research aims to contribute to quantifying whole building life cycle assessment using various software tools to determine how they can aid the construction industry in reducing carbon emissions, and in particular embodied emissions, through analysis and reporting. The conducted research seeks to examine and compare three whole building life cycle assessment tools; Athena Impact Estimator, Tally and One-Click LCA to relate the input variability to the outputs of the three programs. The three whole building life-cycle assessments were conducted using a case study building with an identical bill of materials and compared to determine the applicability and strengths of one program over another. The research confirmed that the three programs output significantly different results given the variability in scope, allowable program inputs and generated “black-box” back-end calculations, where the outputted whole building life cycle carbon equivalents of One-Click LCA is less than half than of Tally meaning the programs outputs cannot be simply compared side-by-side.


Author(s):  
Feng Xu ◽  
Jiao-Jing Pan

Abstract The study on carbon emissions in packaging industry is a very important but easily overlooked field. In order to explore carbon emissions of the packaging life cycle, the wineglass is used as the packaging object to discuss the difference between carbon emissions and costs caused by two new packaging structures and a common packaging structure on the market. The measurement boundary includes raw material collection, raw material processing, packaging manufacturing, transportation and end of life. It was found that reasonable packaging structure instead the buffer function of expanded polyethylene can effectively reduce the carbon emissions and costs.


2018 ◽  
Vol 10 (11) ◽  
pp. 3978 ◽  
Author(s):  
Xiaohu Lin ◽  
Jie Ren ◽  
Jingcheng Xu ◽  
Tao Zheng ◽  
Wei Cheng ◽  
...  

In recent years, China has been vigorously carrying out the planning and implementation of Sponge City. Since the implementation of Sponge City projects involves substantial materials and energy consumption, it is significant to account corresponding carbon emissions and sinks. The existed studies about carbon emission of stormwater management measures, however, are not able to take the whole life cycle and different facilities into consideration. Therefore, this study develops a comprehensive accounting model based on Intergovernmental Panel on Climate Change (IPCC) guidelines and life cycle assessment (LCA) method to predict carbon emissions and carbon sinks of Sponge City projects more comprehensively and accurately. The model is applied to an actual residential community in Shanghai as a case study. Results show that the total indirect carbon emission is estimated to be 774,277 kg CO2 eq during a 30-year lifespan, among which carbon emissions from operation and maintenance phases are 2570 kg CO2 eq/year and 7309 kg CO2 eq/year, respectively, both directly proportional to the service life of the facilities. Three kinds of achievable carbon sinks are carbon sequestration in green space (5450 kg CO2 eq/year), carbon sink from rainwater utilization (15,379 kg CO2 eq/year) and carbon sink from runoff pollutant removal (19,552 kg CO2 eq/year). Carbon neutrality is expected to be reached after approximately 19 years. The established carbon emission accounting model can contribute to better planning and construction of Sponge City in China and enhance further energy conservation and carbon emission reduction.


Author(s):  
Graham Morrison

The majority of open source projects fail. This chapter presents one such project as a case study, written from the perspective of the sole developer. It charts the various stages of development, from initial motivation and enthusiasm through the later stages of apathy and decline. It deals with many of the problems encountered by a sole developer, and the various approaches undertaken to maintain development momentum. This chapter provides anecdotal evidence as opposed to statistical analysis, giving an individual’s perspective on the development life cycle of an open source project, illustrating real world barriers to development and the typical issues that can stall a project.


Sign in / Sign up

Export Citation Format

Share Document