scholarly journals A Meta Study of the Relationship Between Phase Change Material Parameters and Temperature Reduction in Fire Fighter Protective Clothing

2019 ◽  
Vol 6 ◽  
pp. 28-37
Author(s):  
Josef Richmond ◽  
Lesley Spencer ◽  
Tommy Tran ◽  
Evan Williams

Firefighters are exposed to high risk scenarios in which the prevention of extreme heat injuries is largely dependent on the effectiveness of their protective clothing. The following meta-study examines contemporary literature to determine the usefulness of phase change materials (PCM’s) in improving the effectiveness of the current firefighter protective clothing (FFPC) model in order to better protect firefighters. The time- temperature for multiple PCM’s in environments with low, medium and high heat fluxes (taken as 2.5-5 kW/m2 for 700 seconds, 10-15 kW/m2 for 300 seconds and 20-40 kW/m2for 30 seconds respectively) were compared in terms of the rate of temperature increase and final temperature. The study found that PCM I produced the best temperature reduction in a low flux, PCM K did so in a medium flux, and PCM B did so in a high flux. The study also found that overall the PCMs were most effective in a low flux, therefore further study should be directed towards creating PCMs that are more effective in high-flux environments. Keywords: Phase Change Material; Fire Fighter Protective Clothing; Heat Flux

2020 ◽  
Author(s):  
Mahmoud Elsharafi ◽  
Ali Elmozughi ◽  
Kelton Vidal ◽  
Rumelia Thomas ◽  
Saleh Almutairi ◽  
...  

Abstract Energy recovery can benefit from phase change materials. A phase change material is a substance with a high heat of fusion, melting, and solidifying at a certain temperature, which is capable of storing and releasing large amounts of energy. The objective of this research is to enhance the efficiency of a system by performing experiments with corrugated plates within the recovery unit and paraffin as the PCM (Phase Change Material). This research focuses on understanding Thermal Energy Storage (TES) at melting temperature for heating. This research used corrugated plates as an advanced material and channels of media which carry the thermal fluid (water) to the back plate of the unit which was occupied with the PCM or in this case paraffin. The experiment measured the temperature in and out from the unit to estimate how much kWh (power) that unit can save in the molten wax and also, monitor the temperature inside the PCM using implanted thermocouples. The approach of this work is to collect temperature as a function of time to find how much energy units are used to reach the charging point and reverse the flow to retrieve energy from the unit.


2011 ◽  
Vol 48 (4) ◽  
pp. 841-864 ◽  
Author(s):  
Lee K. McCarthy ◽  
Marino di Marzo

Author(s):  
Ayoub Gounni ◽  
Mustapha El Alami

In order to really assess the thermal performance of a wall incorporating phase change material (PCM), a reduced scale cavity has been monitored during two heating cycles. For each cycle, the heat source inside the test cell is switched “on” for 5 h and its setpoint is 38 °C and then switched off for 4 h. The outdoor air temperature is kept constant at a low temperature of 20 °C. Two walls are equipped with a PCM layer at different depths in order to study the optimal PCM location. The two other walls are wooden and glass to model a real building. The comparison between the four walls is made based on the absorbed heat fluxes and outside surface temperatures. The results show that the location of the PCM close to the heat source reaches its melting temperature and then reduces the surface temperature. At this location, the PCM layer stores the major part of the inlet heat flux. It takes 10 h to release the absorbed heat flux. However, the PCM layer, practically, does not have an effect on the surface temperatures and absorbed heat fluxes, when it is placed far from the heat source.


Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


RSC Advances ◽  
2014 ◽  
Vol 4 (74) ◽  
pp. 39552-39557 ◽  
Author(s):  
Zhonghao Rao ◽  
Xinyu You ◽  
Yutao Huo ◽  
Xinjian Liu

The nano-encapsulated phase change materials (PCM), which have several good thermophysical properties, were proposed as potential for thermal energy storage.


2013 ◽  
Vol 683 ◽  
pp. 106-109
Author(s):  
Xiao Gang Zhao ◽  
Ying Pan

Phase change materials, abbreviated as PCM, due to the excellent heat storage performance, have been used as building materials and got more and more attention in recent years. The article introduce the building application of phase change material, and discuss its contribution to the building energy saving.


2018 ◽  
Vol 36 (3) ◽  
pp. 151-164 ◽  
Author(s):  
Abu Shaid ◽  
Lijing Wang ◽  
Stanley M. Fergusson ◽  
Rajiv Padhye

Phase change material (PCM) in firefighting garment enhances protection and comfort. Wearing a protective clothing containing PCM, while fighting the fire, is a direct risk to the wearer as most PCMs used are flammable. This article reports a solution by using aerogel. Thermal liner fabric was treated with PCM and/or aerogel and then their thermal properties were analyzed. It has been found that the mean ignition time of PCM-containing thermal liner is around 3.3 s in current case while this value significantly increased to 5.5 s when the combination of aerogel and PCM was used. Moreover, the weight of the liner fabric with aerogel decreased in comparison to PCM-containing liner. Aerogel also slowed down the spreading of flame in PCM-containing fabric. Aerogel–coated liner showed superior heat resistance and the combination of aerogel with PCM increased the thermal resistance of PCM-containing liner.


Sign in / Sign up

Export Citation Format

Share Document