scholarly journals From the Indian Ocean to the Pacific: Affranchis and Petits-Blancs in New Caledonia

Author(s):  
Karin Elizabeth Speedy

The sugar crisis of 1860 in Reunion motivated the migration of thousands of Réunionnais to New Caledonia. Along with sugar planters, wealthy enough to transport their production equipment as well as their indentured workers, significant groups of both skilled and unskilled labourers made their way from Reunion to the Pacific colony in the second half of the nineteenth century. In previous publications, I have focused my attention on the sugar industry and the immigration of the rich planters and their coolies. While I have drawn attention to the heterogeneity of the sugar workers and have signalled the arrival and numeric importance of tradespeople, manual and low skilled workers from Reunion, I have not yet described these immigrants in detail. This is because this group has been largely ignored by history and details surrounding their circumstances are scant. In this paper, I discuss the background and origins of these people and highlight some of the fascinating stories to emerge from this migration to New Caledonia and beyond.

2020 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Editors of the JIOWS

The editors are proud to present the first issue of the fourth volume of the Journal of Indian Ocean World Studies. This issue contains three articles, by James Francis Warren (Murdoch University), Kelsey McFaul (University of California, Santa Cruz), and Marek Pawelczak (University of Warsaw), respectively. Warren’s and McFaul’s articles take different approaches to the growing body of work that discusses pirates in the Indian Ocean World, past and present. Warren’s article is historical, exploring the life and times of Julano Taupan in the nineteenth-century Philippines. He invites us to question the meaning of the word ‘pirate’ and the several ways in which Taupan’s life has been interpreted by different European colonists and by anti-colonial movements from the mid-nineteenth century to the present day. McFaul’s article, meanwhile, takes a literary approach to discuss the much more recent phenomenon of Somali Piracy, which reached its apex in the last decade. Its contribution is to analyse the works of authors based in the region, challenging paradigms that have mostly been developed from analysis of works written in the West. Finally, Pawelczak’s article is a legal history of British jurisdiction in mid-late nineteenth-century Zanzibar. It examines one of the facets that underpinned European influence in the western Indian Ocean World before the establishment of colonial rule. In sum, this issue uses two key threads to shed light on the complex relationships between European and other Western powers and the Indian Ocean World.


2021 ◽  
Vol 13 (5) ◽  
pp. 1013
Author(s):  
Kuo-Wei Yen ◽  
Chia-Hsiang Chen

Remote sensing (RS) technology, which can facilitate the sustainable management and development of fisheries, is easily accessible and exhibits high performance. It only requires the collection of sufficient information, establishment of databases and input of human and capital resources for analysis. However, many countries are unable to effectively ensure the sustainable development of marine fisheries due to technological limitations. The main challenge is the gap in the conditions for sustainable development between developed and developing countries. Therefore, this study applied the Web of Science database and geographic information systems to analyze the gaps in fisheries science in various countries over the past 10 years. Most studies have been conducted in the offshore marine areas of the northeastern United States of America. In addition, all research hotspots were located in the Northern Hemisphere, indicating a lack of relevant studies from the Southern Hemisphere. This study also found that research hotspots of satellite RS applications in fisheries were mainly conducted in (1) the northeastern sea area in the United States, (2) the high seas area of the North Atlantic Ocean, (3) the surrounding sea areas of France, Spain and Portugal, (4) the surrounding areas of the Indian Ocean and (5) the East China Sea, Yellow Sea and Bohai Bay sea areas to the north of Taiwan. A comparison of publications examining the three major oceans indicated that the Atlantic Ocean was the most extensively studied in terms of RS applications in fisheries, followed by the Indian Ocean, while the Pacific Ocean was less studied than the aforementioned two regions. In addition, all research hotspots were located in the Northern Hemisphere, indicating a lack of relevant studies from the Southern Hemisphere. The Atlantic Ocean and the Indian Ocean have been the subjects of many local in-depth studies; in the Pacific Ocean, the coastal areas have been abundantly investigated, while offshore local areas have only been sporadically addressed. Collaboration and partnership constitute an efficient approach for transferring skills and technology across countries. For the achievement of the sustainable development goals (SDGs) by 2030, research networks can be expanded to mitigate the research gaps and improve the sustainability of marine fisheries resources.


2020 ◽  
Vol 148 (4) ◽  
pp. 1553-1565 ◽  
Author(s):  
Carl J. Schreck ◽  
Matthew A. Janiga ◽  
Stephen Baxter

Abstract This study applies Fourier filtering to a combination of rainfall estimates from TRMM and forecasts from the CFSv2. The combined data are filtered for low-frequency (LF, ≥120 days) variability, the MJO, and convectively coupled equatorial waves. The filtering provides insight into the sources of skill for the CFSv2. The LF filter, which encapsulates persistent anomalies generally corresponding with SSTs, has the largest contribution to forecast skill beyond week 2. Variability within the equatorial Pacific is dominated by its response to ENSO, such that both the unfiltered and the LF-filtered forecasts are skillful over the Pacific through the entire 45-day CFSv2 forecast. In fact, the LF forecasts in that region are more skillful than the unfiltered forecasts or any combination of the filters. Verifying filtered against unfiltered observations shows that subseasonal variability has very little opportunity to contribute to skill over the equatorial Pacific. Any subseasonal variability produced by the model is actually detracting from the skill there. The MJO primarily contributes to CFSv2 skill over the Indian Ocean, particularly during March–May and MJO phases 2–5. However, the model misses opportunities for the MJO to contribute to skill in other regions. Convectively coupled equatorial Rossby waves contribute to skill over the Indian Ocean during December–February and the Atlantic Ocean during September–November. Convectively coupled Kelvin waves show limited potential skill for predicting weekly averaged rainfall anomalies since they explain a relatively small percent of the observed variability.


2020 ◽  
Vol 3 (1) ◽  
pp. 47-55
Author(s):  
Mohamad Zreik

AbstractThe Chinese Ministry of Commerce issued a statement Friday morning, July 6, 2018, confirming the outbreak of a trade war between the United States and China. The statement came after the United States imposed tariffs on many Chinese goods, in violation of international and bilateral agreements, and the destruction of the concept of free trade which the United States calls for following it. It is a war of opposite directions, especially the contradiction between the new Trump policy and the Chinese approach. The proof is what US Defense Secretary James Matisse announced in Singapore in early June 2018 of “the full strategy of the new United States, in the Indian Ocean and the Pacific,” where China was the “sole enemy of the United States” in China’s geostrategic region. Intentions have become publicized, and trade war between the two economic giants is turning into a reality. This paper will give an overview of the US-China scenario of trade war, then a focused analysis on the Trump’s administration economic decision regarding China, and the consequences of this decision.


Check List ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 1544 ◽  
Author(s):  
Amruta Prasade ◽  
Deepak Apte ◽  
Purushottam Kale ◽  
Otto M.P. Oliveira

The benthic ctenophore Vallicula multiformis Rankin, 1956 is recorded for the first time in the Arabian Sea, from the Gulf of Kutch, west coast of India in March 2013. This occurrence represents a remarkable extension of its geographic distribution that until now included only known the Pacific and Atlantic oceans.


2012 ◽  
Vol 42 (4) ◽  
pp. 602-627 ◽  
Author(s):  
Laurie L. Trenary ◽  
Weiqing Han

Abstract The relative importance of local versus remote forcing on intraseasonal-to-interannual sea level and thermocline variability of the tropical south Indian Ocean (SIO) is systematically examined by performing a suite of controlled experiments using an ocean general circulation model and a linear ocean model. Particular emphasis is placed on the thermocline ridge of the Indian Ocean (TRIO; 5°–12°S, 50°–80°E). On interannual and seasonal time scales, sea level and thermocline variability within the TRIO region is primarily forced by winds over the Indian Ocean. Interannual variability is largely caused by westward propagating Rossby waves forced by Ekman pumping velocities east of the region. Seasonally, thermocline variability over the TRIO region is induced by a combination of local Ekman pumping and Rossby waves generated by winds from the east. Adjustment of the tropical SIO at both time scales generally follows linear theory and is captured by the first two baroclinic modes. Remote forcing from the Pacific via the oceanic bridge has significant influence on seasonal and interannual thermocline variability in the east basin of the SIO and weak impact on the TRIO region. On intraseasonal time scales, strong sea level and thermocline variability is found in the southeast tropical Indian Ocean, and it primarily arises from oceanic instabilities. In the TRIO region, intraseasonal sea level is relatively weak and results from Indian Ocean wind forcing. Forcing over the Pacific is the major cause for interannual variability of the Indonesian Throughflow (ITF) transport, whereas forcing over the Indian Ocean plays a larger role in determining seasonal and intraseasonal ITF variability.


2017 ◽  
Vol 30 (21) ◽  
pp. 8447-8468 ◽  
Author(s):  
Weiqing Han ◽  
Gerald A. Meehl ◽  
Aixue Hu ◽  
Jian Zheng ◽  
Jessica Kenigson ◽  
...  

Previous studies have investigated the centennial and multidecadal trends of the Pacific and Indian Ocean Walker cells (WCs) during the past century, but have obtained no consensus owing to data uncertainties and weak signals of the long-term trends. This paper focuses on decadal variability (periods of one to few decades) by first documenting the variability of the WCs and warm-pool convection, and their covariability since the 1960s, using in situ and satellite observations and reanalysis products. The causes for the variability and covariability are then explored using a Bayesian dynamic linear model, which can extract nonstationary effects of climate modes. The warm-pool convection exhibits apparent decadal variability, generally covarying with the Indian and Pacific Ocean WCs during winter (November–April) with enhanced convection corresponding to intensified WCs, and the Indian–Pacific WCs covary. During summer (May–October), the warm-pool convection still highly covaries with the Pacific WC but does not covary with the Indian Ocean WC, and the Indian–Pacific WCs are uncorrelated. The wintertime coherent variability results from the vital influence of ENSO decadal variation, which reduces warm-pool convection and weakens the WCs during El Niño–like conditions. During summer, while ENSO decadal variability still dominates the Pacific WC, decadal variations of ENSO, the Indian Ocean dipole, Indian summer monsoon convection, and tropical Indian Ocean SST have comparable effects on the Indian Ocean WC overall, with monsoon convection having the largest effect since the 1990s. The complex causes for the Indian Ocean WC during summer result in its poor covariability with the Pacific WC and warm-pool convection.


Sign in / Sign up

Export Citation Format

Share Document