scholarly journals Synthesis of Fe/H-ZSM-5 material by chemical vapor deposition method and its application for degradation of reactive dye

2021 ◽  
Vol 10 (1) ◽  
pp. 67-73
Author(s):  
Giang Pham Thi Thu ◽  
Quang Nguyen Ke ◽  
Thanh Duong Anh ◽  
Manh Nguyen Ba

Fe containing nano ZSM-5 composites (Fe/H-ZSM-5) were successfully prepared by chemical vapor deposition method.  The physical properties of Fe/H-ZSM-5 were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), N2 adsorption-desorption isotherm (BET) analysis. Effects of pH and H2O2 concentration were investigated. The best conditions were found to be pH of 3; 0.3 g.L−1 catalyst and reaction time of 60 min at room temperature. The novel Fe/H-ZSM-5 composite exhibited highly photocatalytic performance of RR-195 degradation and the conversion reached to the value of 92.3 % for after 60 min of reaction.

2016 ◽  
Vol 697 ◽  
pp. 841-845 ◽  
Author(s):  
Jia Xing Chang ◽  
Rong Zheng Liu ◽  
Ma Lin Liu ◽  
You Lin Shao ◽  
Bing Liu

Silicon carbide nanowires have been extensively studied because of their unique physical and chemical properties. They can be applied in high temperature, high frequency, high power, and corrosive environments, and have a wide range of applications in electronics, chemical industry, energy and other fields. In this paper, SiC nanowires with high output were synthesized by chemical vapor deposition method using methyltrichlorosilane as raw material. The influences of the catalyst and temperature were studied. SiC nanochains were also obtained by adding Al2O3 powder under appropriate temperature controlled strategy. These two kinds of one-dimensional SiC nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS) and transmission electron microscope (TEM) methods.


2003 ◽  
Vol 766 ◽  
Author(s):  
Kosuke Takenaka ◽  
Masao Onishi ◽  
Manabu Takenshita ◽  
Toshio Kinoshita ◽  
Kazunori Koga ◽  
...  

AbstractAn ion-assisted chemical vapor deposition method by which Cu is deposited preferentially from the bottom of trenches (anisotropic CVD) has been proposed in order to fill small via holes and trenches. By using Ar + H2 + C2H5OH[Cu(hfac)2] discharges with a ratio H2 / (H2 + Ar) = 83%, Cu is filled preferentially from the bottom of trenches without deposition on the sidewall and top surfaces. The deposition rate on the bottom surface of trenches is experimentally found to increase with decreasing its width.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhenzhen Tian ◽  
Xiaoming Yuan ◽  
Ziran Zhang ◽  
Wuao Jia ◽  
Jian Zhou ◽  
...  

AbstractGrowth of high-quality III–V nanowires at a low cost for optoelectronic and electronic applications is a long-term pursuit of research. Still, controlled synthesis of III–V nanowires using chemical vapor deposition method is challenge and lack theory guidance. Here, we show the growth of InP and GaP nanowires in a large area with a high density using a vacuum chemical vapor deposition method. It is revealed that high growth temperature is required to avoid oxide formation and increase the crystal purity of InP nanowires. Introduction of a small amount of Ga into the reactor leads to the formation of GaP nanowires instead of ternary InGaP nanowires. Thermodynamic calculation within the calculation of phase diagrams (CALPHAD) approach is applied to explain this novel growth phenomenon. Composition and driving force calculations of the solidification process demonstrate that only 1 at.% of Ga in the catalyst is enough to tune the nanowire formation from InP to GaP, since GaP nucleation shows a much larger driving force. The combined thermodynamic studies together with III–V nanowire growth studies provide an excellent example to guide the nanowire growth.


2021 ◽  
Author(s):  
Haipeng Wang ◽  
Cheng Liu ◽  
HuiLi Wang ◽  
Xinpeng Han ◽  
Shaojie Zhang ◽  
...  

One of the phosphorus allotropes called greenish phosphorus was successfully synthesized by simple chemical vapor deposition method. We revealed that the critical factors in the formation mechanism of greenish phosphorus...


Nanoscale ◽  
2011 ◽  
Vol 3 (8) ◽  
pp. 3072 ◽  
Author(s):  
Yu Ye ◽  
Yaoguang Ma ◽  
Song Yue ◽  
Lun Dai ◽  
Hu Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document