scholarly journals Ignition conditions for a self-pulsing discharge with the microhollow cathode in air

2021 ◽  
pp. 11-15
Author(s):  
Sergei Moshkunov ◽  
Kiril Romanov ◽  
Vladislav Khomich ◽  
Ekaterina Shershunova

This work is devoted to the study of the electrical characteristics of a discharge with a microhollow cathode in air at atmospheric pressure. It was experimentally found that the discharge with a microhollow cathode developed in a self-pulsing mode with an average current of hundreds of microamperes. According to the experimental data it was concluded that the self-pulsing frequency linearly depended on the consumed current. The values of the ignition voltage of the self-pulsing discharge with a microhollow cathode at different hole diameters were obtained.

1979 ◽  
Vol 44 (12) ◽  
pp. 3501-3508 ◽  
Author(s):  
Jan Linek

Isobaric vapour-liquid equilibria in the isobutyl formate-isobutyl alcohol and n-butyl formate-isobutyl alcohol systems have been measured at atmospheric pressure. A modified circulation still of the Gillespie type has been used for the measurements. The experimental data have been correlated by means of the third- and fourth-order Margules equations.


Author(s):  
Takuma Sato ◽  
Hiroaki Hanafusa ◽  
Seiichiro HIGASHI

Abstract Crystalline-germanium (c-Ge) is an attractive material for a thin-film transistor (TFT) channel because of its high carrier mobility and applicability to a low-temperature process. We present the electrical characteristics of c-Ge crystallized by atmospheric pressure micro-thermal-plasma-jet (µ-TPJ). The µ-TPJ crystalized c-Ge showed the maximum Hall mobility of 1070 cm2·V−1·s−1 with its hole concentration of ~ 1016 cm−3, enabling us to fabricate the TFT with field-effect mobility (μ FE) of 196 cm2·V−1·s−1 and ON/OFF ratio (R ON/OFF) of 1.4 × 104. On the other hand, RON/OFFs and μFEs were dependent on the scanning speed of the TPJ, inferring different types of defects were induced in the channel regions. These findings show not only a possibility of the TPJ irradiation as a promising method to make a c-Ge TFT on insulating substrates.


2021 ◽  
Vol 86 ◽  
pp. 103738
Author(s):  
Xi-Yue Li ◽  
Dong-Liang Zhong ◽  
Peter Englezos ◽  
Yi-Yu Lu ◽  
Jin Yan ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Kai Guo ◽  
Senhao Zhang ◽  
Shasha Zhao ◽  
Hongbo Yang

This work takes the production and usage scenarios of the data glove as the research object and studies the method of applying the flexible sensor to the data glove. Many studies are also devoted to exploring the transplantation of flexible sensors to data gloves. However, this type of research still lacks the display of specific application scenarios such as gesture recognition or hand rehabilitation training. A small amount of experimental data and theoretical analysis are difficult to promote the development of flexible sensors and flexible data gloves design schemes. Therefore, this study uses the self-made flexible sensor of the research group as the core sensing unit to produce a flexible data glove to monitor the bending changes of the knuckles and then use it for simple gesture recognition and rehabilitation training.


BIBECHANA ◽  
2014 ◽  
Vol 12 ◽  
pp. 135-144 ◽  
Author(s):  
R. P. Koirala ◽  
B. P. Singh ◽  
I. S. Jha ◽  
D. Adhikari

The present work reports a theoretical assessment of the composition dependence of mixing properties of liquid Na-K alloy at 384K at fixed pressure, most likely, at the atmospheric pressure. In this work we have estimated the interaction energy in the alloy at the mentioned temperature on the basis of quasi-chemical approximation for regular alloy and employed it to work out basic thermodynamic properties of mixing such as free energy of mixing, entropy of mixing and enthalpy of mixing as function of composition of the alloy. To understand the dynamic behaviour in the liquid Na-K alloy, we have carried out theoretical investigation of viscosity under consideration of Moelwyn-Hughes equation by using data for enthalpy of mixing obtained from quasi-chemical approximation. Due to scanty of experimental data on viscosity of Na-K alloy at 384K, we have performed computation of viscosity also from Kaptay equation for comparison. The calculations have shown that there is a good match between theoretically computed thermodynamic functions and the available corresponding experimental data. The sets of viscosity values obtained against composition from the two equations show deviations from the ideality and themselves are reasonably comparable to each other.DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11797BIBECHANA 12 (2015) 128-137


1997 ◽  
Vol 119 (2) ◽  
pp. 376-379 ◽  
Author(s):  
Y. Parlatan ◽  
U. S. Rohatgi

A simple method has been developed to model boiling heat transfer from a heat exchanger to pools using the experimental data available in the literature without modeling the flow dynamics of the pool. In this approach the heat flux outside vertical tubes is expressed as a function of outside wall temperature of the tubes and saturation temperature of the pool at or near atmospheric pressure.


2019 ◽  
Vol 25 (2) ◽  
pp. 208-211 ◽  
Author(s):  
David Touboul

Using a modified atmospheric pressure photoionization (APPI) source coupled to a tunable vacuum ultraviolet source at the SOLEIL synchrotron radiation facility, we determined the appearance energy of protonated methanol monomer and dimers at different source temperatures. The experimental data indicated that protonated monomers can be formed through the direct photoionization of neutral methanol by the second emission band of a krypton discharge UV lamp at 116.49 nm (10.64 eV) explaining why methanol can be considered as a weak dopant under APPI conditions. This point is in contradiction with the previously proposed mechanism where photoionization of methanol dimer was followed by the dissociation of the protonated methanol dimer into protonated methanol monomer.


2020 ◽  
Vol 53 (7-8) ◽  
pp. 1482-1492
Author(s):  
Shuo Liu ◽  
Chenguang Xu ◽  
Tongqi Liu ◽  
Yong Cai

In this work, a double-cylinder viscometer is designed to measure dynamic viscosity over a pressure range from atmospheric pressure up to 150 MPa and a temperature range of 278.15–333.15 K. A high-pressure closed cavity is designed innovatively and the magnetic coupling is adopted to transfer the torque to reduce the friction; the inner cylinder with ruby bearing is designed to reduce the friction torque, thus the accuracy of the viscosity measurement is improved. The experiment of measuring the standard viscosity liquid (N10 and N35) under normal pressure and measuring the viscosity of methylbenzene under the pressure of 0.1–150 MPa were carried out, and considering all the experimental data, the uncertainty of the viscosity measurements is approximately ±3%.


Sign in / Sign up

Export Citation Format

Share Document