scholarly journals Algoritma Decision Tree Dan Smote Untuk Klasifikasi Serangan Jantung Miokarditis Yang Imbalance

2021 ◽  
Vol 2 (2) ◽  
pp. 112-122
Author(s):  
Novanto Yudistira ◽  
Aldi Fianda Putra

Serangan jantung atau dalam medis bernama Myocardial Infarction atau infark miokard adalah gangguan jantung yang sangat serius. Dalam pendeteksian ini menggunakan komplikasi-komplikasi yang diderita oleh pasien. Algoritma yang akan dievaluasi yaitu Naive Bayes, Decision Tree, dan Support Vector Machine. Namun tidak serta merta dapat dilakukan evaluasi. Sebelum mengevaluasi ketiga algoritma ini dilakukan perbaikan dataset, karena pada dataset ini sendiri terdapat data yang kosong. Perbaikan dilakukan dengan cara mengimputasikan data dimana nilai diperkirakan berdasarkan rata-rata dari anggota klaster pada kelas yang sama. Setelah melakukan imputasi data, maka dapat dilakukan normalisasi dengan metode MinMax dengan tujuan agar rentang fitur terutama data numerik kontinu tidak terlalu besar. Setelah pemrosesan data awal dilakukan maka barulah kita dapat melakukan evaluasi dengan menggunakan metode K-fold Cross Validation. Namun lagi-lagi ditemukan kesalahan yakni data latih yang digunakan ternyata tidak seimbang. Oleh sebab itu dilakukan oversampling pada data agar data menjadi seimbang. Setelah seimbang maka kita dapat melakukan evaluasi kembali dan diperolehlah algoritma yang cocok untuk mengklasifikasikan data seperti dataset Myocardial Infarction Complications adalah algoritma Decision Tree dengan akurasi 98%, diikuti algoritma Support Vector Machine dengan akurasi 91% dan Naïve Bayes dengan akurasi paling rendah yakni 49%.

2021 ◽  
Vol 11 (2) ◽  
pp. 626-636
Author(s):  
Tanthy Tawaqalia Widowati ◽  
Mujiono Sadikin

Salah satu media sosial yang berkembang adalah Twitter. Media sosial Twitter mempermudah masyarakat untuk bebas berpendapat melalui cuitan atau biasa disebut dengan tweets. Netizen dengan bebas menyampaikan opini pribadinya untuk topik apapun, termasuk persepsi terhadap tokoh publik. Artikel ini menyajikan hasil penelitian dan analisis sentimen masyarakat (netizen) terhadap tokoh publik, Nadiem Makariem sebagai Menteri Kementerian Pendidikan dan Kebudayaan baru. Penelitian ini menggunakan teknik data mining yang bertujuan untuk membandingkan hasil klasifikasi dari opini masyarakat yang dituliskan di Twitter. Dataset yang digunakan berasal dari tweets dengan kata kunci ”nadiem makariem”, ”kemendikbud” dan ”pak nadiem”. Tools RapidMiner digunakan untuk membantu tahap pre-processing dan klasifikasi menggunakan dua metode yaitu, Naive Bayes dan Support Vector Machine dengan evaluasi k-fold cross-validation. Dari hasil ujicoba diketahui bahwa untuk kasus yang diteliti, metode Naive Bayes menghasilkan kinerja yang lebih baik dengan accuracy 91.48%,  precision 89.28%  dan recall 91.58%.


2020 ◽  
Vol 5 (2) ◽  
pp. 293
Author(s):  
Nuraeni Herlinawati ◽  
Yuri Yuliani ◽  
Siti Faizah ◽  
Windu Gata ◽  
Samudi Samudi

Aplikasi zoom cloud meetings yang mulai booming digunakan sekarang ini karena adanya pandemi virus corona, sehingga membuat semua kegiatan dilakukan secara virtual. Zoom cloud meetings merupakan aplikasi yang memiliki berbagai fitur termasuk video & audio conference. Pada penelitian ini penulis menggunakan metode Naïve Bayes dan Support Vector Machine dalam menganalisa label sentimen positif atau negatif pada ulasan para pengguna aplikasi zoom di Google Play Store. Jumlah dataset setelah prepocessing menjadi 1.007 record. Data hampir seimbang dengan label positif sebanyak 546 dan label negatif 461 ulasan. Evaluasi model menggunakan 10 fold cross validation diperoleh nilai akurasi dan nilai AUC dari masing-masing algoritma yaitu untuk NB nilai akurasi = 74,37% dan nilai AUC = 0,659. Sedangkan untuk algoritma SVM nilai akurasi = 81,22% dan nilai AUC = 0,886. Dalam penelitian ini dapat diketahui bahwa tingkat akurasi yang didapatkan algoritma Support Vector Machine (SVM) lebih unggul 6,85% dibandingkan algoritma Naïve Bayes (NB). Kata Kunci— Zoom Cloud Meetings, Google Play Store, Virus Corona, Naïve Bayes, Support Vector Machine. Abstract— Zoom cloud meetings application that began to boom is used today because of the corona virus pandemic, so that all activities are carried out virtually. Zoom cloud meetings is an application that has various features including video & audio conferencing. In this study the authors used the Naïve Bayes method and Support Vector Machine in analyzing positive or negative sentiment labels on the zoom users' reviews on the Google Play Store. The number of datasets after prepocessing is 1,007 records. The data is almost balanced with 546 positive labels and 461 negative labels. Evaluation of the model using 10 fold cross validation obtained accuracy values and AUC values from each algorithm, namely for NB, the accuracy value = 74.37% and the AUC value = 0.659. As for the SVM algorithm the accuracy value = 81.22% and the AUC value = 0.886. In this study it can be seen that the accuracy obtained by the Support Vector Machine (SVM) algorithm is 6.85% superior to the Naïve Bayes (NB) algorithm.


2021 ◽  
Vol 21 (1) ◽  
pp. 1-13
Author(s):  
Tri Rivanie ◽  
Rangga Pebrianto ◽  
Taopik Hidayat ◽  
Achmad Bayhaqy ◽  
Windu Gata ◽  
...  

The pandemic that occurred in Indonesia has not yet subsided and far from under control. Indonesian Ministry of Health is most appropriate person to responsible for providing an explanation of actual situation and extent to which state has handled it. However, he has rarely appeared in public lately to explain about handling of Covid-19 pandemic. In response, many people are pros and cons come to give their opinions and feedback. The increasing use of internet during pandemic, especially on social media, where one of them is Twitter, which is a means of expressing opinions. Posting tweets is a community habit to assess or respond to events, as well as represent public's response to an event, especially Ministry of Health steps and policies in handling and breaking chain of Covid-19 pandemic.The tweet posts were taken only in Indonesian-language and also related to performance of Government, especially Ministry of Health. After that, a label is given so that sentiment of tweets is known. To test results of these sentiments, an algorithm is used by comparing two methods of Support Vector Machine (SVM) and Naïve Bayes (NB). Validation was carried out using k-Fold Cross Validation to obtain an accuracy value. The results show that accuracy value for NB algorithm is 66.45% and SVM algorithm has a greater accuracy value of 72.57%. So it can be seen that SVM algorithm managed to get the best accuracy value in classifying positive comments and negative comments related to sentiment analysis towards Ministry of Health. Keywords—Support Vector Machine, Naïve Bayes, Analisis sentimen, K-Fold Cross Validation


2018 ◽  
Vol 14 (2) ◽  
pp. 175
Author(s):  
Elly Indrayuni

Film merupakan subjek yang diminati oleh sejumlah besar orang diantara komunitas jaringan sosial yang memiliki perbedaan signifikan dalam pendapat atau sentimen mereka. Analisa sentimen atau opinion mining merupakan salah satu solusi mengatasi masalah untuk mengelompokan opini atau review menjadi opini positif atau negatif secara otomatis. Teknik yang digunakan dalam penelitian ini adalah Naive Bayes dan Support Vector Machines (SVM). Naive Bayes memiliki kelebihan yaitu sederhana, cepat dan memiliki akurasi yang tinggi. Sedangkan SVM  mampu mengidentifikasi hyperplane terpisah yang memaksimalkan margin antara dua kelas yang berbeda. Hasil klasifikasi sentimen pada penelitian ini terdiri dari dua label class, yaitu positif dan negatif. Nilai akurasi yang dihasilkan akan menjadi tolak  ukur untuk mencari model pengujian terbaik untuk kasus klasifikasi sentimen. Evaluasi dilakukan menggunakan 10 fold cross validation. Pengukuran akurasi diukur dengan confusion matrix dan kurva ROC. Hasil penelitian menunjukkan nilai akurasi untuk algoritma Naive Bayes sebesar 84.50%. Sedangkan nilai akurasi algoritma Support Vector Machine (SVM) lebih besar dari Naive Bayes yaitu sebesar 90.00%.


2018 ◽  
Vol 2 (2) ◽  
pp. 108-115
Author(s):  
Fakhriyani ◽  
Widodo ◽  
Bambang Prasetya Adhi

Beasiswa merupakan salah satu program untuk membantu meringankan mahasiswa dalam membayar uang kuliah, namun sering terjadi kesalahan dalam pemberian beasiswa tersebut karena masih dilakukan secara manual dan tidak adanya kriteria yang jelas bagaimana seorang mahasiswa dapat memperoleh beasiswa. Untuk mengantisipasi agar tidak terjadinya kesalahan dalam pemberian beasiswa maka dibutuhkan sebuah Sistem Pendukung Keputusan, namun sebelum dilakukan pembuatan sistem tersebut dirasa perlu untuk mengetahui algoritma terbaik untuk menyeleksi berkas beasiswa tersebut. Penelitian ini menggunakan duaalgoritma Data Mining yaitu algoritma Naïve Bayes dan Support Vector Machine. Naïve Bayes merupakan metode pengklasifikasian yang dapat digunakan untuk memprediksi probabilitas keanggotaan suatu class berdasarkan pengalaman di masa sebelumnya dengan kondisi antar atribut saling bebas. Support Vector Machine adalah sebuah metode prediksi dalam klasifikasi yang dapat dilakukan pada kasus yang secara linier dapat dipisahkan, maupun non-linier dengan menggunakan konsep kernel pada ruang kerja berdimensi tinggi.Data mahasiswa yang lulus dan tidak lulus seleksi berkas beasiswa BPP-PPA akan diolah menggunakan algoritma Naïve Bayes dan Support Vector Machine. Setelah diklasifikasi kedua algoritma tersebut akan dihitung hasil akurasinya menggunakan K-fold Cross Validation. Berdasarkan hasil contoh kasus seleksi menunjukan bahwa hasil perhitungan akurasi algoritma Naïve Bayes adalah 0.7542, sedangkan hasil akurasi algoritma Support Vector Machine adalah 0.99. Kedua sistem telah mampu menangani proses penyeleksiankelulusan pemberkasan beasiswa BPP-PPA Fakultas Teknik Universitas Negeri Jakarta. Algoritma Support Vector Machine menghasilkan rata-rata akurasi 0.99 yang mendekati 1, maka algoritma tersebut dinilai lebih akurat dan direkomendasikan untuk penelitian selanjutnya.


Author(s):  
Anas Faisal ◽  
Yuris Alkhalifi ◽  
Achmad Rifai ◽  
Windu Gata

Penggunaan internet terutama media sosial telah menjadi bagian dari kehidupan bernegara. Hal ini salah satunya karena Anggota Dewan Perwakilan Rakyat Republik Indonesia (DPR RI) banyak yang menyampaikan ide, kebijakan maupun memberikan komentar atas kebijakan pemerintah melalui media sosial. Penelitian ini dilakukan untuk mengukur pendapat atau memisahkan antara sentimen positif dan sentimen negatif terhadap DPR RI. Data yang digunakan dalam penelitian ini didapatkan dengan melakukan crawling pada media sosial twitter. Penelitian dilakukan dengan menggunakan dua Algoritma yaitu Algoritma Support Vector Machine (SVM) dan Naive Bayes (NB). Kedua algoritma tersebut masing-masing dioptimasi menggunakan Particle Swarm Optimization (PSO). Hasil pengujian k-fold cross validation SVM dan NB mendapatkan nilai accuracy 71,04% dan 70,69% dengan nilai Area Under the Curve (AUC) 0,817 dan 0,661. Sedangkan hasil pengujian k-flod cross validation dengan menggunakan PSO, untuk SVM dan NB masing-masing mendapatkan nilai accuracy 75,03% dan 73,49% dengan nilai AUC 0,808 dan 0,719. Penggunaan PSO mampu meningkatkan nilai accuracy algoritma SVM sebesar 3,99% dan 2,8% pada algoritma NB. Hasil dari pengujian kedua algoritma tersebut nilai accuracy tertinggi adalah SVM dengan PSO sebesar 75,03%.


2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


2020 ◽  
Vol 16 (2) ◽  
pp. 75
Author(s):  
Didit Widiyanto

Akurasi sebuah klasifikasi citra ditentukan oleh pengklasifikasi.  Meskipun RoI (Region of Interest) tidak menentukan secara langsung akurasi, namun RoI menentukan lingkup klasifikasi citra.   Terdapat tiga algoritma yang dapat digunakan sebagai algoritma RoI yaitu; Balanced Histogram Thresholding (BHT), algoritma Otsu, dan algoritma klasterisasi K-Means.  Paper ini meninjau algoritma Otsu dan algoritma klasterisasi K-Means yang digunakan oleh lima peneliti.  Dari ke lima peneliti; tiga peneliti menerapkan algoritma Otsu dan dua peneliti menerapkan algoritma K-Means sebagai algoritma RoI. Setelah operasi RoI, ke lima peneliti menerapkan algoritma GLCM (Gray Level Co-occurance Matrix) sebagai pengekstraksi ciri tekstur.  Hasil ekstraksi ciri diklasifikasi dengan menggunakan berbagai pengklasifikasi antara lain SVM (Support Vector Machine), Naive Bayes, dan Decision Tree. Akhirnya dengan membandingkan hasil dari ke lima peneliti, akurasi tertinggi diperoleh sebesar 100% dengan pengklasifikasi SVM menggunakan algoritma Otsu sebagai algoritma RoI, dan akurasi terendah adalah sebesar52% yang menggunakan algoritma Otsu pada kanal S dari citra HSV (Hue, Saturation Value).


JURTEKSI ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 11-18
Author(s):  
Chika Enggar Puspita ◽  
Oktariani Nurul Pratiwi ◽  
Edi Sutoyo

Abstract: Question classification is a computer science system, which aims to analyze questions and can label each question based on existing categories. Questions can be collected from several materials or topics that are many and different. Therefore, the researcher intends to create a classification system for quiz questions Data Warehouse and Business Intelligence which can be grouped into topics Data Warehouse, Business Intelligence, Data Analytics, and Performance Measurement. One way to solve this problem is by approach machine learning. In this study, researchers used a comparison of machine learning algorithms, namely the algorithm NaïveBayes and SupportVectorMachine using SMOTE and methods Cross-Validation The results of this study show the best accuracy results and are very helpful. The results obtained in the method cross-validation before SMOTE resulted in an accuracy rate of 82.02% for the results after going through the SMOTE stage of 94.79% on the algorithm Naïve Bayes, while the algorithm SupportVectorMachine get accuracy of 81.39% in the process before SMOTE for the results after going through SMOTE of 96.52%.  Keywords: Cross-Validation; Machine Learning; Naive Bayes; Support Vector Machine; Question Classification  Abstrak: Klasifikasi pertanyaan merupakan sebuah sistem ilmu komputer, yang bertujuan untuk menganalisis pertanyaan serta dapat memberi label pada setiap pertanyaan berdasarkan kategori yang ada. Pertanyaan soal dapat dikumpulkan dari beberapa materi atau topik yang banyak dan berbeda. Oleh karena itu, bermaksud untuk membuat sistem klasifikasi pertanyaan soal kuis Data Warehouse dan Business Intelligence yang dapat dikelompokkan menjadi topik Data Warehouse, Business Intelligence, Data Analitik, dan Pengukuran Kinerja. Cara  yang dapat dilakukan untuk permasalahan ini dengan menggunakan pendekatan MachineLearning. Pada penelitian kali ini menggunakan perbandingan algoritma MachineLearning yaitu algoritma NaïveBayes dan SupportVectorMachine menggunakan metode SMOTE dan Cross-Validation. Hasil penelitian ini menunjukkan hasil akurasi yang terbaik dan sangat membantu. Hasil yang diperoleh pada metode cross-validation sebelum SMOTE menghasilkan tingkat akurasi sebesar 82.02% untuk hasil sesudah melalui tahap SMOTE sebesar 94.79 %  pada algoritma Naïve Bayes, sedangkan pada algoritma Support Vector Machine menghasilkan akurasi sebesar pada proses sebelum SMOTE 81.39% untuk hasil sesudah melalui SMOTE sebesar 96.52%. Kata kunci: Klasifikasi Pertanyaan; Pembelajaran Mesin; Naive Bayes; Support Vector Machine; Cross-Validation


2017 ◽  
Vol 3 (1) ◽  
pp. 1-6
Author(s):  
Ahmad Ilham

Masalah data kelas tidak seimbang memiliki efek buruk pada ketepatan prediksi data. Untuk menangani masalah ini, telah banyak penelitian sebelumnya menggunakan algoritma klasifikasi menangani masalah data kelas tidak seimbang. Pada penelitian ini akan menyajikan teknik under-sampling dan over-sampling untuk menangani data kelas tidak seimbang. Teknik ini akan digunakan pada tingkat preprocessing untuk menyeimbangkan kondisi kelas pada data. Hasil eksperimen menunjukkan neural network (NN) lebih unggul dari decision tree (DT), linear regression (LR), naïve bayes (NB) dan support vector machine (SVM).


Sign in / Sign up

Export Citation Format

Share Document