SUSTAINABILITY OF APPLE PRODUCTION IN THE TROPICS USING LAND RENT ANALYSIS IN BATU CITY INDONESIA

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Ferdianto Budi Samudra ◽  
Santun R.P. Sitorus ◽  
Edi Santosa ◽  
Machfud Santosa ◽  
Machfud Santosa

Apples have gone through a long process of adapting to the Indonesian climate. Limited availability of non-renewable land creates fierce competition for land use. The purpose of this study was to a) determine the history and condition of apple farming, b) to analyze the land rent value of apple plants with plants that have the potential to replace them, namely oranges, guava, and seasonal plants, c) to determine the factors that affect the land rent value of citrus, guava, and seasonal plants. Data obtained through interviews with selected informants using a questionnaire and analyzed using land rent analysis to determine the value and factors that influence it. The results showed that apple plants' introduction has resulted in several varieties that have successfully adapted to the Indonesian climate. Indonesian apples' development is still 99.81% centered in East Java, with bad apples' sustainability because the land rent value is much lower than other commodities.

2002 ◽  
Vol 46 (1) ◽  
Author(s):  
Dietrich Schmidt-Vogt

AbstractManagement of secondary tropical forests: a new perspective for sustainable use of forests in Asia. The decline of primary forests in the tropics is leading to a reassessment of the role secondary forests might play within the context of tropical forest management. Recent research has shown that secondary forests in the tropics can be both rich in species and complex in terms of stand structure. There is, moreover, a growing recognition of the importance of secondary forests for traditional subsistence economies in the tropics and of their economic potential for land use systems in the future. Management of secondary forests in Asia as an alternative to the extraction of timber from primary forests but also as one among other options to intensify traditional land use systems has a potential for the future especially because of the existence of vast tracts of valuable secondary forest cover, and because of the store of traditional knowledge that can still be found in tropical Asia.


2016 ◽  
Vol 13 (14) ◽  
pp. 4253-4269 ◽  
Author(s):  
Rosa Maria Roman-Cuesta ◽  
Mariana C. Rufino ◽  
Martin Herold ◽  
Klaus Butterbach-Bahl ◽  
Todd S. Rosenstock ◽  
...  

Abstract. According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41–72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) contributes roughly a quarter ( ∼  10–12 Pg CO2e yr−1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice, and livestock. In spite of the importance of this sector, it is unclear where the regions with hotspots of AFOLU emissions are and how uncertain these emissions are. Here we present a novel, spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°) for the tropics for the period 2000–2005. Our data highlight the following: (i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; (ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (69 %) and to their uncertainties (98 %); (iii) higher gross fluxes from forests, which coincide with higher uncertainties, making agricultural hotspots appealing for effective mitigation action; and (iv) a lower contribution of non-CO2 agricultural emissions to the total gross emissions (ca. 25 %), with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions of 8.0 (5.5–12.2) were in the range of other databases (8.4 and 8.0 Pg CO2e yr−1 in FAOSTAT and the Emissions Database for Global Atmospheric Research (EDGAR) respectively), but we offer a spatially detailed benchmark for monitoring progress in reducing emissions from the land sector in the tropics. The location of the AFOLU hotspots of emissions and data on their associated uncertainties will assist national policy makers, investors, and other decision-makers who seek to understand the mitigation potential of the AFOLU sector.


2019 ◽  
Vol 32 (22) ◽  
pp. 7611-7627 ◽  
Author(s):  
E. Robertson

Abstract The biophysical response to a local change in land use is calculated using the HadGEM2-ES Earth system model. The biophysical temperature response is found to be a small residual of three large opposing flux responses: available energy, sensible heat, and latent heat. Deforestation reduces available energy, which is balanced by a reduction in heat lost via turbulent fluxes. However, the changes in turbulent heat fluxes are not simply a response to the reduction in available energy; rather, they are a direct response to land-use change, caused by reduced roughness length and, in the tropics, an increase in the Bowen ratio. Evaluation against satellite-derived observational datasets shows that in response to deforestation, the model has too much albedo-driven cooling and too little latent-heat-driven warming, leading to a large cooling bias.


2020 ◽  
Author(s):  
Geoffrey Gallice ◽  
Riccardo Mattea ◽  
Allison Stoiser

ABSTRACTInsect migrations rival those of vertebrates in terms of numbers of migrating individuals and even biomass, although instances of the former are comparatively poorly documented. This is especially true in the world’s tropics, which harbor the vast majority of Earth’s insect species. Understanding these mass movements is of critical and increasing importance as global climate and land use change accelerate and interact to alter the environmental cues that underlie migration, particularly in the tropics. Here, we provide the first evidence for an insect migration for the nymphalid butterfly Panacea prola in the Amazon, the world’s largest and most biodiverse rainforest that is experiencing a shifting climate and rapid forest loss.


2015 ◽  
Vol 12 (23) ◽  
pp. 7299-7313 ◽  
Author(s):  
J. van Lent ◽  
K. Hergoualc'h ◽  
L. V. Verchot

Abstract. Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (104 studies, 392 N2O and 111 NO case studies), we determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (44 studies, 135 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 90) and 1.7 ± 0.5 (n = 36) kg N ha−1 yr−1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better with the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3− / [NO3−+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not increase significantly overall as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen availability and WFPS were the main factors explaining changes in N2O emissions following LUC, therefore it is important that experimental designs monitor their spatio-temporal variation. Gaps in the literature on N oxide fluxes included geographical gaps (Africa, Oceania) and LU gaps (degraded forest, wetland (notably peat) forest, oil palm plantation and soy cultivation).


2018 ◽  
Vol 108 (6) ◽  
pp. 792-799 ◽  
Author(s):  
G.-J. Brandon-Mong ◽  
J.E. Littlefair ◽  
K.-W. Sing ◽  
Y.-P. Lee ◽  
H.-M. Gan ◽  
...  

AbstractArthropod communities in the tropics are increasingly impacted by rapid changes in land use. Because species showing distinct seasonal patterns of activity are thought to be at higher risk of climate-related extirpation, global warming is generally considered a lower threat to arthropod biodiversity in the tropics than in temperate regions. To examine changes associated with land use and weather variables in tropical arthropod communities, we deployed Malaise traps at three major anthropogenic forests (secondary reserve forest, oil palm forest, and urban ornamental forest (UOF)) in Peninsular Malaysia and collected arthropods continuously for 12 months. We used metabarcoding protocols to characterize the diversity within weekly samples. We found that changes in the composition of arthropod communities were significantly associated with maximum temperature in all the three forests, but shifts were reversed in the UOF compared with the other forests. This suggests arthropods in forests in Peninsular Malaysia face a double threat: community shifts and biodiversity loss due to exploitation and disturbance of forests which consequently put species at further risk related to global warming. We highlight the positive feedback mechanism of land use and temperature, which pose threats to the arthropod communities and further implicates ecosystem functioning and human well-being. Consequently, conservation and mitigation plans are urgently needed.


Author(s):  
Paulo Artaxo

Tropical forests, with their high biological activity, have the potential to emit large amounts of trace gases and aerosol particles to the atmosphere. The accelerated development and land clearing that is occurring in large areas of the Amazon basin suggest that anthropogenic effects on natural biogeochemical cycles are already occurring (Gash et al. 1996). The atmosphere plays a key role in this process. The tropics are the part of the globe with the most rapidly growing population, the most dramatic industrial expansion and the most rapid and pervasive change in land use and land cover. Also the tropics contain the largest standing stocks of terrestrial vegetation and have the highest rates of photosynthesis and respiration. It is likely that changes in tropical land use will have a profound impact on the global atmosphere (Andreae 1998, Andreae and Crutzen 1997). A significant fraction of nutrients are transported or dislocated through the atmosphere in the form of trace gases, aerosol particles, and rainwater (Keller et al. 1991). Also the global effects of carbon dioxide, methane, nitrous oxide, and other trace gases have in the forest ecosystems a key partner. The large emissions of isoprene, terpenes, and many other volatile organic compounds could impact carbon cycling and the production of secondary aerosol particles over the Amazon region. Vegetation is a natural source of many types of aerosol particles that play an important role in the radiation budget over large areas (Artaxo et al. 1998). There are 5 major reservoirs in the Earth system: atmosphere, biosphere (vegetation, animals), soils, hydrosphere (oceans, lakes, rivers, groundwater), and the lithosphere (Earth crust). Elemental cycles of carbon, oxygen, nitrogen, sulfur, phosphorus, and other elements interact with the different reservoirs of the Earth system. The carbon cycle has important aspects in tropical forests due to the large amount of carbon stored in the tropical forests and the high rate of tropical deforestation (Jacob 1999). In Amazonia there are two very different atmospheric conditions: the wet season (mostly from November to June) and the dry season (July-October) (see Marengo and Nobre, this volume). Biomass burning emissions dominate completely the atmospheric concentrations over large areas of the Amazon basin during the dry season (Artaxo et al. 1988).


Author(s):  
Colin Vance

Understanding household farming behavior among smallholders is an essential element of land-change studies inasmuch as a considerable portion of the world is dominated by land-users of this kind. Smallholders (peasants in some literature) are especially important within the tropical forests of Mexico, and the southern Yucatán peninsular region is no exception. This region, as elsewhere in the tropics, is characterized by underdeveloped markets and the consequent partial engagement of frontier farmers as market participants. Sparse exchange opportunities resulting from remoteness, low population density, and poorly developed infrastructure constrain these farmers to maintain a strong focus on consumption production, especially in terms of staple foods. Indeed, until the late 1960s, households in the region were totally subsistence-based and had virtually no experience with the agricultural market. Today, smallholder farmers retain consumption production, though a growing proportion also produce crops for sale. While this dual position in the market and in subsistence is an increasingly prevalent feature of smallholder farmers throughout the developing world, studies of deforestation commonly ascribe to them a wholly commercial orientation by employing profit-maximizing theoretical structures as a basis for econometrically modeling their land-use decisions (e.g. Chomitz and Gray 1996; Cropper, Griffiths, and Mani 1999; Cropper, Puri, and Griffiths 2001; Nelson, Harris, and Stone 2001; Nelson and Hellerstein 1997; Panayotou and Sungsuwan 1994; Pfaff 1999). In essence, the assertion of profit-maximization rests on the assumption that agents are fully engaged in markets, from which it follows that production, being strictly a function of farm technology and exogenously given input and output prices, is entirely independent of consumption and labor supply (Barnum and Squire 1979). This chapter explores the implications of relaxing the perfect-markets assumption for the modeling of semi-subsistence and commercial land-use decisions. By introducing variables measuring the consumption side of the colonist household, evidence is presented to suggest that, consistent with mixed or hybrid production themes (e.g. Singh, Squire, and Strauss 1986; Turner and Brush 1987), farmers operating in a context of thin product and/or labor markets do not exhibit behavior corresponding to that of a commercially oriented profit-maximizing farm.


2019 ◽  
pp. 191-208
Author(s):  
Jeffrey A. McNeely ◽  
John R. MacKinnon
Keyword(s):  
Land Use ◽  

Sign in / Sign up

Export Citation Format

Share Document