scholarly journals P1FW.1 - Highly ammonia-sensing using direct in situ electrodeposited polypyrrole-dodecylbenzene sulfonic acid film on ITO coated flexible substrates.

2018 ◽  
Author(s):  
A. Mekki ◽  
F. Merdj ◽  
D. Guettiche ◽  
B. Mettai
2018 ◽  
Vol 26 (6) ◽  
pp. 511-520 ◽  
Author(s):  
Fateh Merdj ◽  
Ahmed Mekki ◽  
Djamil Guettiche ◽  
Boualem Mettai ◽  
Zakaria Bekkar Djeloul Sayah ◽  
...  

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Chia-Fu Chen ◽  
Chi-an Dai ◽  
Wen-Yen Chiu

AbstractIn this work, poly(3-ethylenedioxythiophene) (PEDOT) was synthesized on glass by spin coating for 10 seconds at 500 rpm and polymerization was carried out in an oven at 110°C for 10 min. Methanol and water mixture were used as the solvent and dodecylbenzene sulfonic acid (DBSA) as the surfactant. The conductivities of films were measured and their relationship with different solvent or various surfactant contents were discussed. The morphology of films was observed by SEM, and PEDOT synthesized in methanol-rich solvents or with less DBSA content had more smooth surfaces, showed lower degradation temperature (by TGA). Also, PEDOT synthesized in methanol-rich solvents or with less DBSA were doped better, as observed by UV-Vis spectra.


RSC Advances ◽  
2014 ◽  
Vol 4 (51) ◽  
pp. 26810-26816 ◽  
Author(s):  
Weijie Wang ◽  
Suping Sun ◽  
Shijia Gu ◽  
Hongwei Shen ◽  
Qihao Zhang ◽  
...  

In this context, a one-pot and in situ strategy for fabrication of AgNPs (Ag nanoparticles)/PANI (polyaniline) nanocomposites in a micellar solution of dodecylbenzene sulfonic acid (DBSA, anionic surfactant) is introduced.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Wu Yan ◽  
Xing Shuangxi ◽  
Jing Shengyu ◽  
Zhou Teili ◽  
Zhao Chun

AbstractWe reported a chemical approach for the in-situ preparation of conducting polyaniline (PANI)/Fe2O3 composite dispersions using dodecylbenzene sulfonic (DBSA) acid both as dopant and surfactant. The PANI/Fe2O3 composite dispersions were characterized by X-ray diffraction, UV-vis and FT-IR spectra and conductivity measurement. The dispersions showed good stability and existed without precipitate for at least half a year. The gas-sensing behavior of the composite film to 100 ppm of NH3 was studied through monitoring the change of the resistance.


Author(s):  
E. S. Boatman ◽  
G. E. Kenny

Information concerning the morphology and replication of organism of the family Mycoplasmataceae remains, despite over 70 years of study, highly controversial. Due to their small size observations by light microscopy have not been rewarding. Furthermore, not only are these organisms extremely pleomorphic but their morphology also changes according to growth phase. This study deals with the morphological aspects of M. pneumoniae strain 3546 in relation to growth, interaction with HeLa cells and possible mechanisms of replication.The organisms were grown aerobically at 37°C in a soy peptone yeast dialysate medium supplemented with 12% gamma-globulin free horse serum. The medium was buffered at pH 7.3 with TES [N-tris (hyroxymethyl) methyl-2-aminoethane sulfonic acid] at 10mM concentration. The inoculum, an actively growing culture, was filtered through a 0.5 μm polycarbonate “nuclepore” filter to prevent transfer of all but the smallest aggregates. Growth was assessed at specific periods by colony counts and 800 ml samples of organisms were fixed in situ with 2.5% glutaraldehyde for 3 hrs. at 4°C. Washed cells for sectioning were post-fixed in 0.8% OSO4 in veronal-acetate buffer pH 6.1 for 1 hr. at 21°C. HeLa cells were infected with a filtered inoculum of M. pneumoniae and incubated for 9 days in Leighton tubes with coverslips. The cells were then removed and processed for electron microscopy.


2012 ◽  
Vol 77 (7) ◽  
pp. 3640-3645 ◽  
Author(s):  
Mohammad A. Zolfigol ◽  
Ardeshir Khazaei ◽  
Ahmad R. Moosavi-Zare ◽  
Abdolkarim Zare ◽  
Hendrik G. Kruger ◽  
...  

2003 ◽  
Vol 66 (1) ◽  
pp. 115-119 ◽  
Author(s):  
J. JEAN ◽  
J.-F. VACHON ◽  
O. MORONI ◽  
A. DARVEAU ◽  
I. KUKAVICA-IBRULJ ◽  
...  

Six commercial disinfectants were tested for their efficacy in inactivating hepatitis A virus in solution or attached to agri-food surfaces. Disinfectant I contains 10% quaternary ammonium plus 5% glutaraldehyde;disinfectant II contains 12% sodium hypochlorite; disinfectant III contains 2.9% dodecylbenzene sulfonic acid plus 16% phosphoric acid; disinfectant IV contains 10% quaternary ammonium; disinfectant V contains 2% iodide; and disinfectant VI contains 2% stabilized chlorine dioxide. Among these, disinfectants I and II were shown to be the most effective in inactivating hepatitis A virus in solution. The efficacy of these disinfectants was further tested against hepatitis A virus attached to common agri-food surfaces, including polyvinyl chlorine, high-density polyethylene, aluminum, stainless steel, and copper. Disinfectant II was shown to be the most effective, with a maximum inactivation level of about 3 log10. The inactivation efficacy was shown to be affected by the concentration of the active ingredient, the contact time between the disinfectant and the contaminated surfaces, and the incubation temperature. In general, hepatitis A virus was shown to be highly resistant to most disinfectants tested, and high concentrations of active ingredient were needed to achieve acceptable inactivation levels.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3866
Author(s):  
Varvara Kabanova ◽  
Oxana Gribkova ◽  
Alexander Nekrasov

The electrochemical synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) was first carried out in the presence of mixtures of flexible-chain and rigid-chain polyacids and their Na-salts. Earlier on with the example of polyaniline, we have shown the non-additive effect of the rigid-chain component of polyacid mixtures on the electrodeposition of polyaniline films, their morphology and spectroelectrochemical properties. In this study, we confirmed the non-additive effect and showed that such mixed PEDOT–polyelectrolyte films possess unique morphology, spectroelectrochemical and ammonia sensing properties. The electrosynthesis was carried out in potential cycling, galvanostatic and potentiostatic regimes and monitored by in situ UV–Vis spectroscopy. UV–Vis spectroelectrochemistry of the obtained PEDOT–polyelectrolyte films revealed the dominating influence of the rigid-chain polyacid on the electronic structure of the mixed complexes. The mixed PEDOT–polyacid films demonstrated the best ammonia sensing performance (in the range of 5 to 25 ppm) as compared to the films of individual PEDOT–polyelectrolyte films.


Sign in / Sign up

Export Citation Format

Share Document