Energy Saving Potential of Dynamic Lighting Control in Street Lighting Systems in Libya

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Salah M Alabani

This paper studies the manner of energy consumption in Libyan street lighting systems and general road section. It also suggests proposal system with two cases of operation for an attempt to apply the energy saving program by adopting an optimum method in order to decrease the demand of energy in this section and to reduce the use of uneconomic equipment.The proposal system in this paper introduces the Light Emitting Diode (LED) street lighting technology to be used instead of traditional luminaries High Pressure Sodium (HPS). The proposed system is divided into two cases. The first case discusses the replacement of traditional luminaries (HPS) with energy saving luminaries (LED), while second case explains how integrating control node (dynamic dimmer) into LED in order to dim output lighting in streets will save more energy.This study reaches a result that a significant amount of energy of %47 (about 1092.23 GWh/year) of total energy consumed in street lighting sector could be saved if first case is applied. Moreover, it suggests that more energy of %58 (about 1380.02 GWh/year) of total energy consumed in the same sector cloud be saved if the second case is adopted.

2021 ◽  
Vol 6 (1) ◽  
pp. 260-275
Author(s):  
Yixuan Zhang ◽  
Yihua Hu ◽  
Zion Tse ◽  
Yuwei Liu ◽  
Jiamei Deng ◽  
...  

Abstract The light-emitting diode (LED) is an essential component of intelligent street lighting (ISL) systems. An efficient ISL system can not only reduce power consumption by planning LED illuminating time but also reduce maintenance costs through a high degree of automation. In this paper, a buck-boost converter is used to realise composite transmission of power and signals for an ISL system. The power is modulated by the pulse width modulation (PWM) approach, and the switching ripple generated in the PWM process is utilised as the carrier of the signals transmitted between the remote-control centre and the slave nodes. Moreover, the proposed model involves a ‘request to send (RTS)/confirm to send (CTS)’ mechanism to avoid signal conflicts. Compared with the conventional power line communication (PLC) approach, the proposed transmission scheme has the advantages of simple circuit structure and simple system wiring. Additionally, a simulation model built in MATLAB/Simulink proves the designed transmission method has strong anti-noise ability.


2019 ◽  
Vol 15 (28) ◽  
Author(s):  
Diego Julián Rodríguez Patarroyo ◽  
Iván Felipe Cely Garzón ◽  
Cristhian Alexander Letrado Forero

Introduction: This Literature Review article is the result of a research on the current situation of smart public lighting systems with light-emitting diode (LED) technology in cities around the world. Problem: How convenient is it to use smart public lighting system with LED luminaires? Objective: To review the context of smart public lighting with LED technology. Methodology: Within this project, a lit review was conducted with more than 50 academic articles found in different databases such as: IEEE Xplore, Scopus, ScienceDirect etc. The selection criteria of the information followed the revision of articles from 2006 to 2018, and also, took into account their installation and performance in different cities and places of the world. Furthermore, articles on polluting and inefficient technologies were excluded. Conclusion: Considering the current context in which LED smart public lighting is, it is more likely to be implemented in the future. Results: Smart LED street lighting systems are more efficient in energy use, leads to savings in costs in medium terms, and finally, present a lower environmental impact compared to conventional lighting systems. Limitations: The review focuses on energy efficiency and economic aspects, not on social aspects. Originality: Smart LED public lighting systems have been researched within the economic and energy efficiency context.


2012 ◽  
Vol 490-495 ◽  
pp. 2254-2258
Author(s):  
Li Lin Zang ◽  
Shuo Li ◽  
Da Jun Tian

The light emitting diode (LED) street lighting systems based on solar photovoltaic technology have been used for some time. In this paper, we present an analysis aiming at assessing the feasibility and economic performance of a solar-powered street lighting system for a 1km road. The present study introduces the architecture of a classical solar-powered LED street lighting system and estimates the total investment cost for a 1 km highway with 2 lanes. The cost comparison of solar-powered LED lighting and sodium lamps using grid was carried out. The calculations show that the energy saving effect of solar-powered LED lighting systems is obvious but the initial investment of solar-powered LED systems is more than sodium lighting systems using grid. The investment cycle is about 2.2 years under the current conditions.


Author(s):  
Jennifer A. Brons ◽  
John D. Bullough ◽  
Daniel C. Frering

Many municipalities are beginning to undertake efforts to retrofit their existing high pressure sodium (HPS) street lighting with LED (light emitting diode) luminaires. Unlike HPS lighting systems, which are available in a limited range of standard wattages and configurations, LED street lighting systems vary widely in wattage and physical configuration. Moreover, the technological performance of LED lighting continues to improve, whereas HPS is a mature technology with substantial improvements unlikely in the future. To develop a sound basis for selecting LED lighting systems for retrofit street lighting, photometric simulation calculations under a range of pole spacing, road width and luminaire wattage were performed. The results indicated that LED luminaires can have substantially lower wattage than HPS luminaires to produce the same light levels on the road. Further, LED luminaires tend to direct more of their output onto the road compared with HPS luminaires. As a result, LED luminaires can be used that produce substantially fewer lumens overall than HPS systems. Because the white light from LED sources makes illuminated street scenes appear brighter than the yellowish light from HPS lamps, even further reductions in light output can be accomplished with LED street lighting systems to match the same visual effect under HPS.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 202
Author(s):  
Gianluca Serale ◽  
Luca Gnoli ◽  
Emanuele Giraudo ◽  
Enrico Fabrizio

Artificial lighting systems are used in commercial greenhouses to ensure year-round yields. Current Light Emitting Diode (LED) technologies improved the system efficiency. Nevertheless, having artificial lighting systems extended for hectares with power densities over 50W/m2 causes energy and power demand of greenhouses to be really significant. The present paper introduces an innovative supervisory and predictive control strategy to optimize the energy performance of the artificial lights of greenhouses. The controller has been implemented in a multi-span plastic greenhouse located in North Italy. The proposed control strategy has been tested on a greenhouse of 1 hectare with a lighting system with a nominal power density of 50 Wm−2 requiring an overall power supply of 1 MW for a period of 80 days. The results have been compared with the data coming from another greenhouse of 1 hectare in the same conditions implementing a state-of-the-art strategy for artificial lighting control. Results outlines that potential 19.4% cost savings are achievable. Moreover, the algorithm can be used to transform the greenhouse in a viable source of energy flexibility for grid reliability.


2021 ◽  
Vol 13 (4) ◽  
pp. 1985
Author(s):  
Musa Al Murad ◽  
Kaukab Razi ◽  
Byoung Ryong Jeong ◽  
Prakash Muthu Arjuna Samy ◽  
Sowbiya Muneer

A reduction in crop productivity in cultivable land and challenging environmental factors have directed advancement in indoor cultivation systems, such that the yield parameters are higher in outdoor cultivation systems. In wake of this situation, light emitting diode (LED) lighting has proved to be promising in the field of agricultural lighting. Properties such as energy efficiency, long lifetime, photon flux efficacy and flexibility in application make LEDs better suited for future agricultural lighting systems over traditional lighting systems. Different LED spectrums have varied effects on the morphogenesis and photosynthetic responses in plants. LEDs have a profound effect on plant growth and development and also control key physiological processes such as phototropism, the immigration of chloroplasts, day/night period control and the opening/closing of stomata. Moreover, the synthesis of bioactive compounds and antioxidants on exposure to LED spectrum also provides information on the possible regulation of antioxidative defense genes to protect the cells from oxidative damage. Similarly, LEDs are also seen to escalate the nutrient metabolism in plants and flower initiation, thus improving the quality of the crops as well. However, the complete management of the irradiance and wavelength is the key to maximize the economic efficacy of crop production, quality, and the nutrition potential of plants grown in controlled environments. This review aims to summarize the various advancements made in the area of LED technology in agriculture, focusing on key processes such as morphological changes, photosynthetic activity, nutrient metabolism, antioxidant capacity and flowering in plants. Emphasis is also made on the variation in activities of different LED spectra between different plant species. In addition, research gaps and future perspectives are also discussed of this emerging multidisciplinary field of research and its development.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 960
Author(s):  
Jenny Manuela Tabbert ◽  
Hartwig Schulz ◽  
Andrea Krähmer

A light-emitting diode (LED) system covering plant-receptive wavebands from ultraviolet to far-red radiation (360 to 760 nm, “white” light spectrum) was investigated for greenhouse productions of Thymus vulgaris L. Biomass yields and amounts of terpenoids were examined, and the lights’ productivity and electrical efficiency were determined. All results were compared to two conventionally used light fixture types (high-pressure sodium lamps (HPS) and fluorescent lights (FL)) under naturally low irradiation conditions during fall and winter in Berlin, Germany. Under LED, development of Thymus vulgaris L. was highly accelerated resulting in distinct fresh yield increases per square meter by 43% and 82.4% compared to HPS and FL, respectively. Dry yields per square meter also increased by 43.1% and 88.6% under LED compared to the HPS and FL lighting systems. While composition of terpenoids remained unaffected, their quantity per gram of leaf dry matter significantly increased under LED and HPS as compared to FL. Further, the power consumption calculations revealed energy savings of 31.3% and 20.1% for LED and FL, respectively, compared to HPS. In conclusion, the implementation of a broad-spectrum LED system has tremendous potential for increasing quantity and quality of Thymus vulgaris L. during naturally insufficient light conditions while significantly reducing energy consumption.


Author(s):  
Kai Zhang ◽  
Ningning Zhu ◽  
Mingming Zhang ◽  
Lei Wang ◽  
Jun Xing

Recently, the light-emitting diode (LED) has been considered as an energy-saving and environment-friendly lighting technology,which is ten times more energy efficient than conventional incandescent lights. As an emerging photoelectric material,...


2012 ◽  
Vol 164 ◽  
pp. 93-96 ◽  
Author(s):  
Chang Guo ◽  
Jian Yao

This paper analyzed the effect of same insulation materials on energy-saving potential of three different buildings by using the energy simulation program DOE-2. The results show that the heating energy saving rate of the building decreases when the building shape coefficient increases, while cooling energy saving rate of the building rises and the total energy saving rate of the buildings will reduce.


Sign in / Sign up

Export Citation Format

Share Document