scholarly journals Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops

2021 ◽  
Vol 13 (4) ◽  
pp. 1985
Author(s):  
Musa Al Murad ◽  
Kaukab Razi ◽  
Byoung Ryong Jeong ◽  
Prakash Muthu Arjuna Samy ◽  
Sowbiya Muneer

A reduction in crop productivity in cultivable land and challenging environmental factors have directed advancement in indoor cultivation systems, such that the yield parameters are higher in outdoor cultivation systems. In wake of this situation, light emitting diode (LED) lighting has proved to be promising in the field of agricultural lighting. Properties such as energy efficiency, long lifetime, photon flux efficacy and flexibility in application make LEDs better suited for future agricultural lighting systems over traditional lighting systems. Different LED spectrums have varied effects on the morphogenesis and photosynthetic responses in plants. LEDs have a profound effect on plant growth and development and also control key physiological processes such as phototropism, the immigration of chloroplasts, day/night period control and the opening/closing of stomata. Moreover, the synthesis of bioactive compounds and antioxidants on exposure to LED spectrum also provides information on the possible regulation of antioxidative defense genes to protect the cells from oxidative damage. Similarly, LEDs are also seen to escalate the nutrient metabolism in plants and flower initiation, thus improving the quality of the crops as well. However, the complete management of the irradiance and wavelength is the key to maximize the economic efficacy of crop production, quality, and the nutrition potential of plants grown in controlled environments. This review aims to summarize the various advancements made in the area of LED technology in agriculture, focusing on key processes such as morphological changes, photosynthetic activity, nutrient metabolism, antioxidant capacity and flowering in plants. Emphasis is also made on the variation in activities of different LED spectra between different plant species. In addition, research gaps and future perspectives are also discussed of this emerging multidisciplinary field of research and its development.

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 202
Author(s):  
Gianluca Serale ◽  
Luca Gnoli ◽  
Emanuele Giraudo ◽  
Enrico Fabrizio

Artificial lighting systems are used in commercial greenhouses to ensure year-round yields. Current Light Emitting Diode (LED) technologies improved the system efficiency. Nevertheless, having artificial lighting systems extended for hectares with power densities over 50W/m2 causes energy and power demand of greenhouses to be really significant. The present paper introduces an innovative supervisory and predictive control strategy to optimize the energy performance of the artificial lights of greenhouses. The controller has been implemented in a multi-span plastic greenhouse located in North Italy. The proposed control strategy has been tested on a greenhouse of 1 hectare with a lighting system with a nominal power density of 50 Wm−2 requiring an overall power supply of 1 MW for a period of 80 days. The results have been compared with the data coming from another greenhouse of 1 hectare in the same conditions implementing a state-of-the-art strategy for artificial lighting control. Results outlines that potential 19.4% cost savings are achievable. Moreover, the algorithm can be used to transform the greenhouse in a viable source of energy flexibility for grid reliability.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 960
Author(s):  
Jenny Manuela Tabbert ◽  
Hartwig Schulz ◽  
Andrea Krähmer

A light-emitting diode (LED) system covering plant-receptive wavebands from ultraviolet to far-red radiation (360 to 760 nm, “white” light spectrum) was investigated for greenhouse productions of Thymus vulgaris L. Biomass yields and amounts of terpenoids were examined, and the lights’ productivity and electrical efficiency were determined. All results were compared to two conventionally used light fixture types (high-pressure sodium lamps (HPS) and fluorescent lights (FL)) under naturally low irradiation conditions during fall and winter in Berlin, Germany. Under LED, development of Thymus vulgaris L. was highly accelerated resulting in distinct fresh yield increases per square meter by 43% and 82.4% compared to HPS and FL, respectively. Dry yields per square meter also increased by 43.1% and 88.6% under LED compared to the HPS and FL lighting systems. While composition of terpenoids remained unaffected, their quantity per gram of leaf dry matter significantly increased under LED and HPS as compared to FL. Further, the power consumption calculations revealed energy savings of 31.3% and 20.1% for LED and FL, respectively, compared to HPS. In conclusion, the implementation of a broad-spectrum LED system has tremendous potential for increasing quantity and quality of Thymus vulgaris L. during naturally insufficient light conditions while significantly reducing energy consumption.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Salah M Alabani

This paper studies the manner of energy consumption in Libyan street lighting systems and general road section. It also suggests proposal system with two cases of operation for an attempt to apply the energy saving program by adopting an optimum method in order to decrease the demand of energy in this section and to reduce the use of uneconomic equipment.The proposal system in this paper introduces the Light Emitting Diode (LED) street lighting technology to be used instead of traditional luminaries High Pressure Sodium (HPS). The proposed system is divided into two cases. The first case discusses the replacement of traditional luminaries (HPS) with energy saving luminaries (LED), while second case explains how integrating control node (dynamic dimmer) into LED in order to dim output lighting in streets will save more energy.This study reaches a result that a significant amount of energy of %47 (about 1092.23 GWh/year) of total energy consumed in street lighting sector could be saved if first case is applied. Moreover, it suggests that more energy of %58 (about 1380.02 GWh/year) of total energy consumed in the same sector cloud be saved if the second case is adopted.


Author(s):  
Paolo Visconti ◽  
Daniele Romanello ◽  
Giovanni Zizzari ◽  
Vito Ventura ◽  
Giorgio Cavalera

This work presents an electronic board for driving and control of High Intensity Discharge (HID) lamps and Light Emitting Diode (LED) lamps. The proposed electronic board is able to drive HID or LED lamps by means of a reconfigurable output. This feature allows using the ballast in lighting systems that currently use traditional discharge lamps, as well as keeping the same ballast when discharge lamps are replaced by LED modules in the near future, when LED street lighting systems will be more affordable. Additionally, since the lighting system is designed to be used in rural areas where there is no public electricity, each lighting point incorporates a system to convert solar energy into continuous voltage by means of photovoltaic panels. In this work, energy saving issues are taken into account.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Umut Zeynep Uras ◽  
Mehmet Arık ◽  
Enes Tamdoğan

In recent years, light emitting diodes (LEDs) have become an attractive technology for general and automotive illumination systems replacing old-fashioned incandescent and halogen systems. LEDs are preferable for automobile lighting applications due to its numerous advantages such as low power consumption and precise optical control. Although these solid state lighting (SSL) products offer unique advantages, thermal management is one of the main issues due to severe ambient conditions and compact volume. Conventionally, tightly packaged double-sided FR4-based printed circuit boards (PCBs) are utilized for both driver electronic components and LEDs. In fact, this approach will be a leading trend for advanced internet of things applications embedded LED systems in the near future. Therefore, automotive lighting systems are already facing with tight-packaging issues. To evaluate thermal issues, a hybrid study of experimental and computational models is developed to determine the local temperature distribution on both sides of a three-purpose automotive light engine for three different PCB approaches having different materials but the same geometry. Both results showed that FR4 PCB has a temperature gradient (TMaxBoard to TAmbient) of over 63 °C. Moreover, a number of local hotspots occurred over FR4 PCB due to low thermal conductivity. Later, a metal core PCB is investigated to abate local hot spots. A further study has been performed with an advanced heat spreader board based on vapor chamber technology. Results showed that a thermal enhancement of 7.4% and 25.8% over Al metal core and FR4-based boards with the advanced vapor chamber substrate is observed. In addition to superior thermal performance, a significant amount of lumen extraction in excess of 15% is measured, and a higher reliability rate is expected.


Author(s):  
Minna Kivimäenpää ◽  
Virpi Virjamo ◽  
Rajendra Prasad Ghimire ◽  
Jarmo Holopainen ◽  
Riitta Julkunen-Tiitto ◽  
...  

Our objective was to study how changes in the light spectra affects growth, carbohydrate, chlorophyll, carotenoid, terpene, alkaloid and phenolic concentrations, and BVOC (biogenic volatile organic compound) emissions of Norway spruce (Picea abies) seedlings. This study was conducted during the growth of the third needle generation in plant growth chambers. Two light spectra with the main difference in proportion of blue light (400-500 nm) and equal photon flux densities were provided by LED (light-emitting diode) lamps: 1) control (white light + 12 % blue light) and 2) increased blue light (+B) (white light + 45% blue light). The +B treatment increased needle concentrations of total flavonoids and acetophenones. The major changes in the phenolic profile were an accumulation of astragalin derivatives and the aglycone of picein. +B decreased concentrations of the main alkaloid compound, epidihydropinidine, and it’s precursor, 2-methyl-6-propyl-1,6-piperideine, emission rates of limonene, myrcene and total monoterpenes, and concentrations of a few terpenoid compounds, mainly in stems. Growth, needle carbohydrates and pigments were not affected. The results suggest that supplemental blue light shifts carbon allocation between secondary metabolism routes, from alkaloid and terpenoid synthesis to flavonoid and acetophenone synthesis. The changes may affect herbivory and abiotic stress tolerance of Norway spruce.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1351
Author(s):  
Chia-Chen Chen ◽  
Maw-Rong Lee ◽  
Chi-Rei Wu ◽  
Hsin-Ju Ke ◽  
Hui-Min Xie ◽  
...  

Investigations were carried out to study the effects of light-emitting diode (LED) lights on growth and development of isosteroidal alkaloids in embryogenic calli of Fritillaria cirrhosa D. Don, an important traditional Chinese medicine herb. Calli were cultured in glass bottles, each containing 100 mL of Murashige and Skoog’s basal medium supplemented with 2% sucrose and 0.4% gellan gum powder, a gelling agent. These bottles were incubated in a specially designed plant growth chamber equipped with eight different LED lights consisting of single or combinations of four different light spectra emitting blue (450 nm), green (525 nm), red (660 nm), and far-red (730 nm) light. After three months of incubation, morphological changes in embryogenic calli were recorded, and LC-MS/MS analysis of cultures was carried out for peimisine, sipeimine, peiminine, and peimine. The highest number of somatic embryos and the maximum fresh weight was recorded in calli incubated under red (9R), infrared (9IR), and a combination of red+blue+infrared (3R3B3IR), respectively, in decreasing order. The highest contents of peimisine, peiminine, and peimine were recorded under red (9R) and infrared (9IR) lights, respectively. Eight LED lights had significant effects on the morphogenesis of embryogenic calli of F. cirrhosa D. Don and contents of isosteroidal alkaloids.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5994
Author(s):  
Beata Brzychczyk ◽  
Tomasz Hebda ◽  
Norbert Pedryc

Microalgae are a practical source of biological compounds for biodiesel production. This study examined the influence of three different light-emitting diode (LED) systems on the biomass production of green algae Chlorella vulgaris BA0002a. The cultivation was carried out in a photobioreactor illuminated from the bottom with a single side light jacket (PBR I), in a photobioreactor illuminated from the bottom with a double side light jacket (PBR II) and in a photobioreactor illuminated only from the top (PBR III). Research has shown that the intensification of algae cell production and growth depends on the light distribution and exposure time of a single cell to radiation. In the experiment, the highest growth of algae cells was obtained in the photobioreactor with double jacket and lower light panel. The lowest cell growth was observed in the photobioreactor illuminated only from above. For cultures raised in the PBR I and PBR II photobioreactors, increased oxygen production was observed, which was directly related to the increased production of biomass, which in turn was dependent on the increased amount of radiant energy.


Author(s):  
John D. Bullough

Light-emitting diodes (LEDs) differ from incandescent light sources in several ways that are relevant to energy and maintenance requirements of airfield lighting systems. They have higher luminous efficacy and, when designed properly, have longer useful operating lives; both factors make LEDs attractive candidates for airfield lighting. The photometric, colorimetric, and temporal characteristics of LEDs also differ from those of incandescent light sources, and these can have important implications for the appearance of runway and taxiway lighting systems. The present paper reviews publications summarizing experimental and analytical investigations designed to assess these implications with respect to the following human factors impacts: color identification, brightness and glare, visibility in fog and haze, response to onset of flashing lights, and stroboscopic effects such as the phantom array. Overall, this review of experimental evidence suggests that, in addition to their reduced energy use and maintenance requirements, LED airfield lighting can be advantageous in comparison with incandescent lighting systems used to delineate airport runways and taxiways.


Sign in / Sign up

Export Citation Format

Share Document