scholarly journals THE INFLUENCE OF DATE OF PLANTING AND FERTILIZER APPLICATION ON GROWTH COMPONENTS OF COLUMBUS GRASS (SORGHUM ALMUM)

2021 ◽  
Vol 24 (1) ◽  
pp. 62-69
Author(s):  
I. R. Muhammad ◽  
M. S Kallah ◽  
E. O. Otchere ◽  
J. P. Otchere ◽  
J. P. Alawa ◽  
...  

Trials were conducted at Gangora in the northern Guinea Savanna ecological zone of Nigeria during the 1990 and 1991 rainy seasons. The effects of date of planting (4th,14th, 24th June and 4th  July) and levels of nitrogen fertilizer (0, 50,100, 150 and 200kg/ha) on growth components of Sorghum almum  were investigated. Planting in mid-June (14th June) in 1990 and early-July (4th July) in 1991 resulted in superior stand established and dry matter yields (p<0.05) than other dates. In mid-June and early-July planting 14 day post-planting, plant densities were 7.0 and 9.0 culms/m2 while plant heights were 20.4 and 11.3cm for the respective years. It had high tillering capacity and irrespective of date of planting (except for early-June planting) plant densities by 56 days post-planting (DPP) were greater than 100 culms/m2. Plant height at this stage were greater than 100 culms/m2 and were generally above 200cm. ninety DPP the pasture was at full bloom/hard dough stage. Dm yields then ranged from 8.0 to 11.4 tDM/ha in 1990 and 9.6 to 14.7 tDM/ha in 1991. Similarly seed yield for the respective years were 894.7 and 836.3 kg/ha. Fertilizer application (p<0.05) plant vigour, tillering and dry matter yield up to the highest N applied. In the first years trial, plant density at 35 days post-planting ranged from 12.0 to 29.0 culms/m2 while in the second year the ranged was 13.0 to 26.0 culms/m2. The corresponding values at 56 DPP (i.e 42 days following N application) were 32.0 to 81.0 and 45.0 to 101.0 culms/m2. Dry matter yields rose steadily from 6.5 to 12.5 tDM/ha in 1990 and from 8.9 to 13.6 tDM/ha in 1991 as fertilizer was increased 0 to 200 kgN/ha. Seed yield during the same period for the respective years varied from 416.0 to 753.0kg/ha. This study has shown that planting between mid-June and early-July with fertilize application of 100 to 200 khN/ha favour S. almum establishment and production in the northern Guinea Savanna of Nigeria

2019 ◽  
Vol 4 (3) ◽  

The present study was undertaken with a view to study the effect of plant density on yield and yield attributes of two soybean varieties in kharif–II season. The experiment was conducted in kharif-II season 2012 at mymensingh with two soybean varieties, namely PB-1 (Shohag) and G-2 (Bangladesh soybean-4) and six plant densities, viz; 20, 40, 60, 80, 100 and 120 plants m-2 established using an equidistant (square) planting pattern of 22.4cm x 22.4 cm, 15.8 cm x 15.8 cm, 12.9 cm x12.9 cm, 11.2 cm x 11.2 cm, 10 cm x 10 cm and 9.1 cm 9.1 cm, respectively. The experiment was laid out in a split-plot design with varieties in main-plots and plant densities in sub-plots. The treatments were replicated three times. Increased plant density increased plant height, number of nodes plant-1, total dry matter, seed yield (1.02 t ha-1) and Stover yield (1.15 t ha-1) 80 to 100 plants m-2 and then decreased with increased plant density. Again increased plant density linearly decreased in number of branches plant-1, fertile pods plant-1, non-fertile pods plant-1, number of seeds plant-1, seed yield plant-1 and 100- seed weight up to 120 plants m-2 depending on variety and season. The study concludes that the highest yield of soybean in kharif –II season could be obtained from varietyPB-1 with a plant density of 100 plants m-2 and 80 plants m-2in G-2.


Author(s):  
J.S. Rowarth

Plantain (Plantago lanceolata) was grown in a radial trial in order to investigate the effect of plant density on seed production. Plant densities ranged from 278 plants/m2 to 17 plants/m2 in 9 arcs. Plants were monitored and harvested individually, thus giving effective high replication (32). Decreasing plant density had a significant positive effect on seed head production (both numbers and size of head), seed yield and plant vigour. Highest seed yield was associated with a density of 17 plants/m2. Keywords: plantain, seed production, plant density, competition, radial trial design


1982 ◽  
Vol 33 (1) ◽  
pp. 53 ◽  
Author(s):  
RC Muchow ◽  
DA Charles-Edwards

An analysis of seed production by crops of Vigna radiata cvv. Berken and CES-ID-21 and V. mungo cv. Regur, grown at a range of plant densities, indicated that the proportion of carbon assimilated during pod-filling and partitioned to the seed varied in such a way that seed yield at maturity was relatively unaffected by plant density. Seed yield of Regur was much higher than that of either Berken or CES-ID-21, and this could be attributed primarily to the longer duration of pod-filling in Regur rather than to any differences in potential pod growth rates. The data support the hypothesis that during the period of pod initiation, each viable pod requires a critical rate of supply of assimilate, and suggest that this critical rate of supply is less for V. mungo than for V. uadiata. Whilst pod number, and hence seed yield, was determined by the rate of assimilate supply during the period of pod initiation, not all the dry matter accumulated during pod-filling was partitioned to the pods. Hence seed yield in these mung bean cultivars does not appear to be determined solely by assimilate supply during pod-filling.


2016 ◽  
Vol 96 (1) ◽  
pp. 151-159 ◽  
Author(s):  
Gan Yantai ◽  
K. Neil Harker ◽  
H. Randy Kutcher ◽  
Robert H. Gulden ◽  
Byron Irvine ◽  
...  

Optimal plant density is required to improve plant phenological traits and maximize seed yield in field crops. In this study, we determined the effect of plant density on duration of flowering, post-flowering phase, and seed yield of canola in diverse environments. The field study was conducted at 16 site-years across the major canola growing area of western Canada from 2010 to 2012. The cultivar InVigor® 5440, a glufosinate-resistant hybrid, was grown at five plant densities (20, 40, 60, 80, and 100 plants m−2) in a randomized complete block design with four replicates. Canola seed yield had a linear relationship with plant density at 8 of the 16 site-years, a quadratic relationship at 4 site-years, and there was no correlation between the two variables in the remaining 4 site-years. At site-years with low to medium productivity, canola seed yield increased by 10.2 to 14.7 kg ha−1 for every additional plant per square metre. Averaged across the 16 diverse environments, canola plants spent an average of 22% of their life cycle flowering and another 27% of the time filling seed post-flowering. Canola seed yield had a negative association with duration of flowering and a positive association with the days post-flowering but was not associated with number of days to maturity. The post-flowering period was 12.7, 14.7, and 12.6 d (or 55, 68, and 58%) longer in high-yield experiments than in low-yield experiments in 2010, 2011, and 2012, respectively. We conclude that optimization of plant density for canola seed yield varies with environment and that a longer post-flowering period is critical for increasing canola yield in western Canada.


2017 ◽  
Vol 30 (3) ◽  
pp. 670-678 ◽  
Author(s):  
ROGÉRIO PERES SORATTO ◽  
TIAGO ARANDA CATUCHI ◽  
EMERSON DE FREITAS CORDOVA DE SOUZA ◽  
JADER LUIS NANTES GARCIA

ABSTRACT The objective of this work was to evaluate the effect of plant densities and sidedressed nitrogen (N) rates on nutrition and productive performance of the common bean cultivars IPR 139 and Pérola. For each cultivar, a randomized complete block experimental design was used in a split-plot arrangement, with three replicates. Plots consisted of three plant densities (5, 7, and 9 plants ha-1) and subplots of five N rates (0, 30, 60, 120, and 180 kg ha-1). Aboveground dry matter, leaf macro- and micronutrient concentrations, yield components, grain yield, and protein concentration in grains were evaluated. Lower plant densities (5 and 7 plants m-1) increased aboveground dry matter production and the number of pods per plant and did not reduce grain yield. In the absence of N fertilization, reduction of plant density decreased N concentration in common bean leaves. Nitrogen fertilization linearly increased dry matter and leaf N concentration, mainly at lower plant densities. Regardless of plant density, the N supply linearly increased grain yield of cultivars IPR 139 and Pérola by 17.3 and 52.2%, respectively.


2020 ◽  
Vol 21 (2) ◽  
pp. 70
Author(s):  
Gina Aliya Sopha

<p>True shallot seed (<em>Allium cepa var Aggregatum group</em>) is an alternative way of growing shallot. Different environments and cultivars need a specific study. The aim of this research was to find out the best technology to grow Trisula true shallot seed by managing plant densities and applying compost and biofertilizer in alluvial soils. The study was performed from May to October 2015, using a split-plot design with four replications. The main plot was plant density: 100 plants m-2 and 70 plants m-2. Subplots were five fertilizer application combinations, they were 100% recommended dose of NPK (R-NPK), 100% R-NPK + compost, 100% R-NPK + compost + biofertilizer, 50% R-NPK + compost and 50% R-NPK + compost + biofertilizer. Results showed that biomass and bulb yield were significantly affected by plant density and fertilizer application. The reduced 50% R-NPK by substituting with compost and biofertilizer was unable to maintain shallot bulb yield equal to 100% R-NPK, suggesting insufficient nutrients derived from compost to satisfy the shallot requirement. The best technology to grow true shallot seed of Trisula variety was 100 plants m-2 plant density and 100% NPK (consisting of 180 kg N ha-1, 52 kg P ha-1 and 50 kg K ha-1) with 2.5 t ha-1 compost that achieved the highest bulb yield of 9.83 t ha-1 and increased the revenue.</p>


2009 ◽  
Vol 57 (1) ◽  
pp. 87-94
Author(s):  
I. Ogoke ◽  
A. Togun

Two seasons of cropping were carried out at three sites in the Guinea savanna to evaluate the residual effects of soyabean on maize. The experiment was laid out as a splitplot design in a randomized complete block with three replications. In the first season, four soyabean varieties with a fallow treatment (control) received phosphorus (P) applied as triple superphosphate (20% P) at the rates of 30 and 60 kg P ha −1 . Maize was grown in these plots in the second season without fertilizer application. At all sites, regardless of the previous crop, total soil N remained low (<1.5 g kg −1 ). Available P was affected by the P rate in the previous year at all sites. From initial values ranging from 5.2–16.2 mg kg −1 in the first season, available P significantly (p<0.05) increased in the second season to 9.8–42.8 mg kg −1 when 30 or 60 kg P ha −1 was applied, compared to 7.7–18.6 mg kg –1 at no P application. Relative to no P application in the previous year, the application of 60 kg P ha −1 significantly increased total dry matter at 6 weeks after planting by 19%, total harvest dry matter by 28%, and grain yield by 37%.


1991 ◽  
Vol 71 (2) ◽  
pp. 481-489 ◽  
Author(s):  
J. R. Moyer ◽  
R. W. Richards ◽  
G. B. Schaalje

Alfalfa was seeded in row spacings of 36, 72 and 108 cm and at broadcast seeding rates of 0.33, 1.0 and 3.0 kg ha−1 on irrigated land at Tilley (1983) and Lethbridge (1984), Alberta to determine the effect of plant density on weed growth and alfalfa seed yield. During the seed-producing years at each location, herbicide treatments were overlaid on seeding treatments in a split-block arrangement to assess the joint effect of herbicides and plant density on alfalfa seed yield. Hexazinone was the main herbicide used for weed control. Alfalfa seed and weeds were harvested for 5 yr following alfalfa establishment. Alfalfa seed yields tended to be maximum with 36-cm row spacings or the 3.0 kg ha−1 broadcast seeding rate, and were similar in row-seeded and broadcast-seeded alfalfa. Dry matter yields of weeds decreased as row spacings decreased or the broadcast seeding rate increased. Hexazinone controlled quackgrass, sow thistle, flixweed and kochia. In the experiment at Tilley with perennial weed infestations, mean alfalfa seed yields from 1984 to 1985 were 20% larger when herbicides were used than in the untreated check. Alfalfa plant densities slightly larger than currently recommended usually produced the largest seed yields and smallest weed infestations. Key words: Medicago sativa, quackgrass, kochia, sow thistle, flixweed, hexazinone


2002 ◽  
Vol 42 (8) ◽  
pp. 1043 ◽  
Author(s):  
M. Seymour ◽  
K. H. M. Siddique ◽  
N. Brandon ◽  
L. Martin ◽  
E. Jackson

The response of Vicia sativa (cvv. Languedoc, Blanchefleur and Morava) and V. benghalensis (cv. Barloo) seed yield to seeding rate was examined in 9 field experiments across 2 years in south-western Australia. There were 2 types of field experiments: seeding rate (20, 40, 60, 100 and 140 kg/ha) × cultivar (Languedoc, Blanchefleur, and Morava or Barloo), and time of sowing (2 times of sowing of either Languedoc or Blanchefleur) × seeding rate (5,�7.5, 10, 15, 20, 30, 40, 50, 75 and 100 kg/ha).A target density of 40 plants/m2 gave 'optimum' seed yield of vetch in south-western Australia. In high yielding situations, with a yield potential above 1.5 t/ha, the 'optimum' plant density for the early flowering cultivar Languedoc (85–97 days to 50% flowering) was increased to 60 plants/m2. The later flowering cultivar Blanchefleur (95–106 days to 50% flowering) had an optimum plant density of 33 plants/m2 at all sites, regardless of fitted maximum seed yield. Plant density in the range 31–38 plants/m2 was found to be adequate for dry matter production at maturity of Languedoc and Blanchefleur. For the remaining cultivars Barloo and Morava we were unable to determine an average optimum density for either dry matter or seed yield due to insufficient and/or inconsistent data.


Sign in / Sign up

Export Citation Format

Share Document