Prestimulation of wheat seedlings with gibberellic acid followed by application of an agitated high dilution of the same hormone

Author(s):  
Sonja Hribar-Marko ◽  
Helmut Graunke ◽  
Waltraud Scherer-Pongratz ◽  
Harald Lothaller ◽  
Peter Christian Endler

Background In previous multicentre studies, the influence of a homeopathic ultra-high dilution of gibberellic acid on wheat growth was scrutinized. Data showed that this test dilution slowed down stalk growth when experiments were performed in the autumn season. Aim To test the hypothesis that pretreatment of grains with high concentrations of gibberellic acid would enhance the growth-inhibiting effect of the ultra-high dilution of the plant hormone Methods Grains of winter wheat (Triticum aestivum, 500 or 1000 per group) were pretreated with (non-agitated) gibberellic acid 10-5, 10-4 and 10-3 or with water (“W”) for control prior to treatment with G30x or W30x. Grains were observed under the influence of extremely diluted gibberellic acid (10-30) prepared by stepwise dilution and agitation according to a protocol derived from homeopathy (“G30x”). Analogously prepared water was used for control (“W30x”). Seedlings were allowed to develop under standardized conditions for 7 days; plants were harvested and stalk lengths were measured. Results Of the four pretreatment variants under study, Ge-3 yielded most growth, followed by Ge-4 , Ge-5 and finally W. This outcome was modulated by the application of G30x and W30x in that the inhibition obtained with G30x as compared to W30x was the greater the lower the pretreatment concentration of G had been. The hypothesis that pretreatment of grains with high concentrations of gibberellic acid would enhance the growth inhibiting effect of G30x had to be rejected. Rather, G30x slowed down stalk growth most in the W group with p < 0.001, only moderately in the Ge-5 and Ge-4 group and not at all in the Ge-3 group.

2021 ◽  
Vol 11 (40) ◽  
pp. 124-125
Author(s):  
Sonja Hribar-Marko ◽  
Waltraud Scherer-Pongratz ◽  
Harald Lothaller ◽  
Peter Christina Endler

Background: In previous multicentre studies[1,2], the influence of a homeopathic ultra high dilution of gibberellic acid on wheat growth was scrutinized. Data showed that this test dilution slowed down stalk growth when experiments were performed in autumn season. Aim: To test the hypothesis that pre treatment of grains with high concentrations of gibberellic acid will enhance the effect of the ultra high dilution of the plant hormone Methods: Grains of winter wheat (Triticum aestivum) were observed under the influence of extremely diluted gibberellic acid (10-30) prepared by stepwise dilution and agitation according to a protocol derived from homeopathy (“G30x”). Analogously prepared water was used for control (“W30x”). Grains (500 or 1000 per group) were pre treated with (not agitated) gibberellic acid 10-5, 10-4 and 10-3 (“Ge-5, Ge-4, Ge-3”) or with water (“W”) for control prior to treatment with G30x or W30x. Seedlings were allowed to develop under standardized conditions for 7 days; plants were harvested and stalk lengths were measured. Results: With regard to pre treatment, it can be seen that the groups treated with Ge-3 showed most growth, followed by the Ge-4 groups, the Ge-5 groups and the non pre treated W groups. This decline is modulated by the application of G30x and W30x (figure 1). The lower the pre treatment concentration of G, the more marked is a slowing down effect of G30x versus W30x. Conclusion: The hypothesis that pre treatment of grains with high concentrations of gibberellic acid will enhance the effect of G30x had to be rejected. In contrast, G30x slowed down stalk growth in the W group with p < 0.001 but only moderately in the Ge-5 and Ge-4 group and not at all in the Ge-3 group. Keywords: homeopathy, wheat stalk growth, gibberellic acid, high dilution References: [1] Pfleger A., Hofäcker J., Scherer-Pongratz W., Lothaller H., Reich C., Endler P.C. The effect of extremely diluted agitated gibberellic acid (10e-30) on wheat seedling development – a two researcher study. Complementary Therapies in Medicine 2011; 19: 164-169. [2] Endler PC, Matzer W, Reich C, Reischl T, Hartmann AM, Thieves K, Pfleger A, Hofäcker J, Lothaller H, Scherer-Pongratz W. Seasonal variation of the effect of extremely diluted agitated gibberellic acid (10e-30) on wheat stalk growth – a multi researcher study. The Scientific World Journal 2011; 11: 1667-1678.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7738
Author(s):  
Zhaoan Sun ◽  
Shuxia Wu ◽  
Biao Zhu ◽  
Yiwen Zhang ◽  
Roland Bol ◽  
...  

Information on the homogeneity and distribution of 13carbon (13C) and nitrogen (15N) labeling in winter wheat (Triticum aestivum L.) is limited. We conducted a dual labeling experiment to evaluate the variability of 13C and 15N enrichment in aboveground parts of labeled winter wheat plants. Labeling with 13C and 15N was performed on non-nitrogen fertilized (−N) and nitrogen fertilized (+N, 250 kg N ha−1) plants at the elongation and grain filling stages. Aboveground parts of wheat were destructively sampled at 28 days after labeling. As winter wheat growth progressed, δ13C values of wheat ears increased significantly, whereas those of leaves and stems decreased significantly. At the elongation stage, N addition tended to reduce the aboveground δ13C values through dilution of C uptake. At the two stages, upper (newly developed) leaves were more highly enriched with 13C compared with that of lower (aged) leaves. Variability between individual wheat plants and among pots at the grain filling stage was smaller than that at the elongation stage, especially for the −N treatment. Compared with those of 13C labeling, differences in 15N excess between aboveground components (leaves and stems) under 15N labeling conditions were much smaller. We conclude that non-N fertilization and labeling at the grain filling stage may produce more uniformly 13C-labeled wheat materials, whereas the materials were more highly 13C-enriched at the elongation stage, although the δ13C values were more variable. The 15N-enriched straw tissues via urea fertilization were more uniformly labeled at the grain filling stage compared with that at the elongation stage.


2021 ◽  
Vol 10 (36) ◽  
pp. 263-264
Author(s):  
Peter Christian Endler ◽  
Christian Reich ◽  
Wolfgang Matzer ◽  
Thomas Reischl ◽  
Anna Maria Hartmann ◽  
...  

Control experiments were performed at different seasons of the year as a follow-up to pilot experiments [1] where a homeopathic high dilution of gibberellic acid had influenced growth in a wheat bio assay (7 days). Grains of winter wheat (Triticum aestivum, Capo variety) were observed under the influence of extremely diluted gibberellic acid (10-30) prepared by stepwise dilution and agitation according to a protocol derived from homeopathy (“G30x”). Analogously prepared water was used for control (“W30x”). Following up on 5 pilot experiments (4 in autumn 2007, 1 in spring 2008), 10 experiments were performed (5 in autumn 2008 or 2009 and 5 in winter 2009 or 2010) with a total of 9 experiments in autumn season (5 researchers, about 9,000 grains), and 6 in winter/spring (4 researchers, about 6,000 grains). Germination rates after 7 days were slightly higher for the autumn experiments (96.1%) than for the winter/spring experiments (94.8%) (p > 0,05), with a non significant trend of more seedlings having germinated in the verum group in the autumn experiments (p > 0,05). All of the 9 autumn experiments (i.e. pilot as well as repetition experiments) showed less stalk growth in the verum group (statistically significant with p < 0.01 in 4, with p < 0.05 in 3 cases, trend in 2 cases). Mean stalk lengths (mm) were 46.97 + 20.50 for the verum group and 50.66 + 19.77 for control (mean + S.D.) at grain level (N = 4,440 per group) and + 3.87 and + 3.38 (+ S.D.) respectively at dish level (217 cohorts of 20 or 25 grains per treatment group). In other words, verum stalk length (92.72%) was 7.28% smaller than control stalk length (100%). The effect size (D means : S.D.), calculated on the basis of dishes, was high (d = 1.02). In contrast, no reliable effect was found in experiments performed in winter/spring (less stalk growth in the verum group in one case, no difference in 2 cases, and more growth in 3 cases). Overall verum stalk length (103.64%) was slightly greater than control stalk length (100%). The effect size, however, was small (d = 0.45). The new data are in line with the 2007 findings, i.e. confirm that gibberellic acid 30x does influence stalk growth.


1988 ◽  
Vol 68 (2) ◽  
pp. 301-309 ◽  
Author(s):  
D. J. GILLILAND ◽  
D. B. FOWLER

In the northern part of the North American Great Plains, the level of cultivar winter-hardiness required for winter wheat (Triticum aestivum L.) production is extremely high. Presently, available winter wheat cultivars with adequate winterhardiness are tall and, under favourable growing conditions, crop lodging and excessive amounts of straw can present serious production problems. Consequently, cultivars with short, stiff straw and a high harvest index would be desirable for high production areas within this region. However, semidwarf cultivars with superior winterhardiness have not yet been developed. In this study, six GA-insensitive (Rht) semidwarf parents with poor to moderate winterhardiness were crossed with three GA-sensitive (rht) tall parents possessing good winterhardiness to produce 20 different single, three-way and double crosses. These crosses were evaluated to determine if the GA-insensitive character could be combined with a high level of winterhardiness in winter wheat. Gibberellic acid (GA) sensitivity analyses of F2 seedlings established that a single GA-insensitive gene was involved in each cross. F2-derived F3 and F3-derived F4 lines were assessed for GA-sensitivity and winterhardiness levels were determined from field survival at several locations in Saskatchewan, Canada. Winter survival of homozygous GA-sensitive and GA-insensitive lines were similar in both generations. Lines with winterhardiness levels similar to those of the three tall parent cultivars were recovered in all GA-response classes. The absence of a meaningful pleiotropic effect of Rht genes on winterhardiness indicates that the reason semidwarf cultivars with superior winterhardiness levels have not been developed is due to the lack of a concentrated breeding effort to combine the two characters. A breeding strategy for the production of adapted winterhardy semidwarf winter wheat cultivars is discussed. The influence of endogenous gibberellin levels on cold hardiness in winter wheat is also considered.Key words: Cold hardiness, field survival, Triticum aestivum L, semidwarf, Gibberellic acid


1990 ◽  
Vol 4 (4) ◽  
pp. 724-730 ◽  
Author(s):  
Kenneth L. Ferreira ◽  
Thomas K. Baker ◽  
Thomas F. Peeper

Field experiments were conducted to determine factors that predispose winter wheat to injury by sulfonylurea herbicides. Wheat was injured occasionally when herbicides were applied postemergence in November or when tank mixed with malathion. CGA 131036 at 28 or 56 g ha-1was less injurious than chlorsulfuron or DPX-G8311 at 26 or 53 g ha-1, and preemergence treatments of chlorsulfuron and DPX-G8311 were less injurious than preplant incorporated or postemergence treatments. Wheat growth stage, minimum post-treatment daily temperature, and summed diurnal temperature fluctuations after treatment and after first post-treatment rainfall were correlated with wheat injury. Grazing and cultivar selection did not affect injury.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1156
Author(s):  
Elena Shopova ◽  
Zornitsa Katerova ◽  
Liliana Brankova ◽  
Ljudmila Dimitrova ◽  
Iskren Sergiev ◽  
...  

The potential of brassinosteroids to modulate the physiological responses of winter wheat (Triticum aestivum L.) to herbicide stress was evaluated. Young winter wheat seedlings were treated with 24-epibrassinolide (EBL) and 24 h later were sprayed with glyphosate. The physiological responses of treated plants were assessed 14 days after herbicide application. Wheat growth was noticeably inhibited by glyphosate. The herbicide application significantly increased the content of the stress markers proline and malondialdehyde (MDA) evidencing oxidative damage. The content of phenolic compounds was decreased in the herbicide-treated plants. Slight activation of superoxide dismutase (SOD) and catalase (CAT) and considerable increase of glutathione reductase (GR) and guaiacol peroxidase (POX) activities were found. Increased POX and glutathione S-transferase (GST) activities were anticipated to be involved in herbicide detoxification. Conjugation with glutathione in herbicide-treated plants could explain the reduction of thiols suggesting unbalanced redox state. EBL application did not alter the plant growth but a moderate activation of antioxidant defense (POX, GR, and CAT activities and phenolic levels) and detoxifying enzyme GST was observed. The hormonal priming provoked a slight decrease in MDA and proline levels. The results demonstrate that EBL-pretreatment partly restored shoot growth and has a potential to mitigate the oxidative damages in glyphosate-treated plants through activation of the enzymatic antioxidant defense and increase of the phenolic compounds.


1988 ◽  
Vol 68 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P. BULMAN ◽  
L. A. HUNT

Two field experiments were conducted to examine the relationships between tillering, spike number and grain yield in three winter wheat (Triticum aestivum L.) cultivars. Treatments were designed to manipulate both the production and survival of tillers, and to provide a high number of spikes per unit area. One experiment involved growth regulator treatments with cycocel and gibberellic acid while the second involved various rates of nitrogen. Grain yield was linearly related to total spike number over a range of 400–1200 spikes m−2 in a combined analysis over locations and years. When only spikes with at least nine fertile spikelets were included, a greater amount of the variability in yield could be explained, and differences among cultivars were related to the number of small, unproductive spikes. When locations and years were analyzed separately, little evidence was found for a diminishing response between grain yield and total spike number. Spike number was related to maximum tiller number in 1982, when winterkill and early spring conditions were unfavorable. Thus, although good fall tillering and winter survival contribute most to producing high spike numbers and grain yield, cultivars must also have the ability both to tiller rapidly in the spring and to sustain high-yielding tillers to provide sufficient compensation following winterkill.Key words: tillering, spikes, yield, wheat, nitrogen, regulators


2018 ◽  
Vol 19 (10) ◽  
pp. 3218 ◽  
Author(s):  
Ewa Ozimek ◽  
Jolanta Jaroszuk-Ściseł ◽  
Justyna Bohacz ◽  
Teresa Korniłłowicz-Kowalska ◽  
Renata Tyśkiewicz ◽  
...  

The endogenous pool of phytoregulators in plant tissues supplied with microbial secondary metabolites may be crucial for the development of winter wheat seedlings during cool springs. The phytohormones may be synthesized by psychrotrophic microorganisms in lower temperatures occurring in a temperate climate. Two fungal isolates from the Spitzbergen soils after the microscopic observations and “the internal transcribed spacer” (ITS) region molecular characterization were identified as Mortierella antarctica (MA DEM7) and Mortierella verticillata (MV DEM32). In order to study the synthesis of indoleacetic acid (IAA) and gibberellic acid (GA), Mortierella strains were grown on media supplemented with precursor of phytohormones tryptophan at 9, 15 °C, and 20 °C for nine days. The highest amount of IAA synthesis was identified in MV DEM32 nine-day-culture at 15 °C with 1.5 mM of tryptophan. At the same temperature (15 °C), the significant promoting effect (about 40% root and shoot fresh weight) of this strain on seedlings was observed. However, only MA DEM-7 had the ACC (1-aminocyclopropane-1-carboxylate) deaminase activity with the highest efficiency at 9 °C and synthesized IAA without tryptophan. Moreover, at the same conditions, the strain was confirmed to possess the strong promoting effect (about 40% root and 24% shoot fresh weight) on seedlings. Both strains synthesized GA in all tested terms and temperatures. The studied Mortierella strains had some important traits that led them to be considered as microbial biofertilizers components, improving plant growth in difficult temperate climates.


2012 ◽  
Vol 58 (No. 1) ◽  
pp. 22-27 ◽  
Author(s):  
Q. Liu ◽  
C. Zheng ◽  
C.X. Hu ◽  
Q. Tan ◽  
X.C. Sun ◽  
...  

Soil arsenic (As) levels are particularly high in parts of China, where wheat and rape are widely grown. Understanding the effects of As concentration on the growth of these two major crops is of significance for food production and security in China. A pot experiment was carried out to study the uptake of As and phosphorus (P), and the soil As bioavailability at different growth stages of wheat and rape. The results indicated that winter wheat was much more sensitive to As stress than rape. Wheat yields were elevated at low rates of As addition (&lt; 60 mg/kg) but reduced at high rates of As concentrations (80&ndash;100 mg/kg); while the growth of rape hadn&rsquo;t showed significant responses to As addition. Phosphorus concentrations in wheat at jointing and ear sprouting stages increased with increasing soil As concentrations, and these increases were assumed to contribute a lot to enhanced growth of wheat at low As treatments. Arsenic did not significantly affect P concentrations in rape either. The highest As concentrations in wheat shoot and rape leaf were 8.31 and 3.63 mg/kg, respectively. Arsenic concentrations in wheat and rape grains did not exceed the maximum permissible limit for food stuffs of 1.0 mg/kg. When soil As concentration was less than 60 mg/kg, both wheat and rape could grow satisfactorily without adverse effects; when soil As concentration was 80&ndash;100 mg/kg, rape was more suitable to be planted than wheat. &nbsp; &nbsp;


Sign in / Sign up

Export Citation Format

Share Document