scholarly journals Identification, molecular characteristics, and tissue differential expression of <i>DGAT2</i> full-CDS cDNA sequence in Binglangjiang buffalo (<i>Bubalus bubalis</i>)

2020 ◽  
Vol 63 (1) ◽  
pp. 81-90
Author(s):  
Fangting Zhou ◽  
Yongyun Zhang ◽  
Xiaohong Teng ◽  
Yongwang Miao

Abstract. It has been found that diacylglycerol acyltransferase-2 (DGAT2) plays a crucial role in the synthesis of triglycerides (TGs) in some mammals, but its role in buffalo lactation is unclear. In the present study, the DGAT2 full-CDS cDNA sequence of Binglangjiang buffalo was isolated, and the physicochemical characteristics and structure of its encoding protein were characterized. Furthermore, the differential expressions of this gene in 10 tissues of lactating and non-lactating buffalo were analyzed by real-time quantitative PCR (RT-qPCR). The results showed that the coding region (CDS) of this gene was 1086 bp in length, encoding a peptide composed of 361 amino acid residues. The deduced amino acid sequence shared more than 98.6 % identity with that of cattle, zebu, yak, and bison in the Bovidae family. Buffalo DGAT2 protein is a slightly hydrophobic protein with a transmembrane region, which functions in membrane of endoplasmic reticulum. Besides, this protein belongs to the LPLAT_MGAT-like family and contains a conserved domain of DAGAT that has a function in the synthesis of TGs. The multi-tissue differential expression analysis demonstrated that DGAT2 was expressed in the heart, liver, mammary gland, and muscle in both non-lactating and lactating buffalo. And its expression level in the heart, liver, and mammary gland during lactation was significantly higher than that during non-lactation. The results indicate that buffalo DGAT2 may be involved in milk fat synthesis. This study can establish a foundation for further elucidating mechanisms of the buffalo DGAT2 gene in milk fat synthesis.

2021 ◽  
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jon Hickford ◽  
Huitong Zhou ◽  
...  

In our previous studies, microRNA-432 (miR-432) was found to be one of differentially expressed miRNAs in ovine mammary gland between the two breeds of lactating sheep with different milk production...


2019 ◽  
Vol 67 (37) ◽  
pp. 10513-10520 ◽  
Author(s):  
Ping Li ◽  
Chengjian Zhou ◽  
Xueying Li ◽  
Mengmeng Yu ◽  
Meng Li ◽  
...  

1974 ◽  
Vol 2 (6) ◽  
pp. 1205-1208 ◽  
Author(s):  
R. DILS ◽  
B. SPEAKE ◽  
R. J. MAYER ◽  
E. LYNCH ◽  
C. R. STRONG ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1357
Author(s):  
Yongliang Fan ◽  
Ziyin Han ◽  
Xubin Lu ◽  
Huimin Zhang ◽  
Abdelaziz Adam Idriss Arbab ◽  
...  

The concentration of bovine milk fat changes regularly with lactation stages. In particular, milk fat percentage is higher in late lactation than mid lactation. Furthermore, milk fat composition is highly subject to a few genes. Thus, transcriptome sequencing was performed to explore the expression patterns of differentially-expressed genes (DEGs) in the parenchymal mammary gland of Holstein dairy cows between mid and late lactation. The 725 DEGs were screened (fold change > 2 and p-value < 0.05), and the peroxisome proliferator-activated receptor (PPAR) signaling pathway associated with lipid synthesis had a significant variation between the two periods (p-value < 0.05). The activation of the PPAR signal pathway may a key factor in the increasing of milk fat content in late lactation compared to mid lactation. Acyl-CoA synthetase long-chain family member 4 (ACSL4), a member of the PPAR signaling pathway, was upregulated in late lactation compared to mid lactation (p < 0.05). ACSL4 catalyzes the activation of long-chain fatty acids for cellular lipid synthesis. However, it remains uncertain that the molecular mechanism of milk fat synthesis is regulated by ACSL4 in dairy cows. Subsequently, the function verification of ACSL4 was performed in bovine mammary epithelial cells (BMECs). The upregulated expression of ACSL4 was accompanied by the increase of the concentration of intracellular triglycerides, whereas knockdown of ACSL4 decreased the concentration of intracellular triglycerides, which demonstrated that ACSL4 plays an important role in modulating milk fat synthesis. In conclusion, the results displayed that ACSL4 expression regulates triglyceride metabolism in ruminant mammary cells.


2016 ◽  
Vol 48 (4) ◽  
pp. 231-256 ◽  
Author(s):  
Johan S. Osorio ◽  
Jayant Lohakare ◽  
Massimo Bionaz

The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.


1978 ◽  
Vol 174 (1) ◽  
pp. 291-296 ◽  
Author(s):  
C S Jones ◽  
D S Parker

1. A cannulation technique is described for measuring arteriovenous differences across the lactating-rabbit mammary gland. 2. Analysis of milk obtained before and after surgery shows no effect of cannulation on milk constituents. 3. Results of blood analysis show significant net changes in the concentrations of glucose, acetate, 3-hydroxybutrate, triacylglycerols and non-esterified fatty acids across the mammary gland. 4. The molar proportions of individual fatty acids in both the triacylglycerol and non-esterified fatty acid fractions did not alter between the arterial and venous samples. 5. The extraction rates are compared with those obtained from other species.


Sign in / Sign up

Export Citation Format

Share Document