scholarly journals Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

2011 ◽  
Vol 11 (5) ◽  
pp. 2245-2279 ◽  
Author(s):  
U. Schumann ◽  
B. Weinzierl ◽  
O. Reitebuch ◽  
H. Schlager ◽  
A. Minikin ◽  
...  

Abstract. Airborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm−3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m−3. The Falcon flew in ash clouds up to about 0.8 mg m−3 for a few minutes and in an ash cloud with approximately 0.2 mg m−3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m−3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240–1600) kg s−1. The volcano induced about 10 (2.5–50) Tg of distal ash mass and about 3 (0.6–23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.

2010 ◽  
Vol 10 (9) ◽  
pp. 22131-22218 ◽  
Author(s):  
U. Schumann ◽  
B. Weinzierl ◽  
O. Reitebuch ◽  
H. Schlager ◽  
A. Minikin ◽  
...  

Abstract. Airborne measurements of Lidar backscatter, aerosol concentrations (particle diameters of 4 nm to 50 μm), trace gas mixing ratios (SO2, CO, O3, H2O), single particle properties, and meteorological parameters have been performed in volcanic ash plumes with the Falcon aircraft operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). A series of 17 flights was performed over Europe between Southern Germany and Iceland during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with Lidar directly over the volcano and up to a distance of 2700 km downwind. Lidar and in-situ measurements covered plume ages of 7 h to 120 h. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentration was evaluated for a material density of 2.6 g cm−3 and for either weakly or moderately absorbing coarse mode particles (refractive index 1.59+0i or 1.59+0.004i). In the absorbing case, the ash concentration is about a factor of four larger than in the non-absorbing limit. Because of sedimentation constraints, the smaller results are the more realistic ones for aged plumes. The Falcon flew in ash clouds up to about 1 mg m−3 for a few minutes and in an ash cloud with more than 0.2 mg m−3 mean-concentration for about one hour without engine damages. In fresh plumes, the SO2 concentration was correlated with the ash mass concentration. Typically, 0.5 mg m−3 ash concentration was related to about 100 nmol mol−31 SO2 mixing ratio and 70 nmol mol−1 CO mixing ratio increases for this volcano period. In aged plumes, layers with enhanced coarse mode particle concentration but without SO2 enhancements occurred. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. The ash plumes were often visible as faint dark layers even for concentrations below 0.1 mg m−3. The ozone concentrations and the humidity inside the plumes were often reduced compared to ambient values. The large abundance of volatile Aitken mode particles suggests nucleation of sulfuric acid droplets. Ammonium sulfate particles were also found on the impactors. The effective diameters decreased from about 5 μm in the fresh plume to about 1 μm for plume ages of up to 6 days. The distal ash mass flux on 2 May was of the order 1800 kg s−1; the SO2 mass flux was about a factor of 3–4 smaller. The volcano ejected about 40 Tg of ash mass and 10 Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash. The data described may be used for further studies, including comparisons to satellite and ground or space based Lidar observations, and for model improvements. 1 Also known as Eyjafjallajökull or Eyjafjöll volcano, http://www.britannica.com/EBchecked/topic/1683937/Eyjafjallajokull-volcano


2012 ◽  
Vol 12 (3) ◽  
pp. 6623-6653
Author(s):  
P. Chazette ◽  
A. Dabas ◽  
J. Sanak ◽  
M. Lardier ◽  
P. Royer

Abstract. An Ultra-Violet Rayleigh-Mie lidar has been integrated aboard the French research aircraft Falcon 20 in order to monitor the ash plume emitted by the Eyjafjallajökul volcano in April–May 2010. Three operational flights were carried out on 21 April, 12 and 16 May 2010 inside French, Spanish and British air spaces, respectively. The original purpose of the flights was to provide the French civil aviation authorities with objective information on the presence and location of the ash plume. The present paper presents the results of detailed analyses elaborated after the volcano crisis. They bear on the structure of the ash clouds and their optical properties such as ash extinction coefficient and lidar ratio. Lidar ratios were measured in the range of 33 to 48 sr, in good agreement with the ratios derived from ground-based lidar measurements performed near Paris (France) in April 2010 (∼47 sr). The ash signature in terms of particulate depolarization was consistent around 45 ± 7% during all flights. Such a value seems to be a good identification parameter for ash. Using specific cross-sections between 0.29 and 1.1 m2 g−1, the minimum (maximal) mass concentrations in the ash plumes are derived for the flights on 12 and 16 May. They were 190 (2300) and 270 (1600) μg m−3, respectively. It may be rather less than, or of the order of the critical level of damage (2 mg m−3) for the aircraft engines, but well above the 200 μg m−3 warning level.


Author(s):  
Franco Marenco ◽  
Ben Johnson ◽  
Kate Turnbull ◽  
Stuart Newman ◽  
Jim Haywood ◽  
...  

2011 ◽  
Vol 11 (6) ◽  
pp. 16417-16437 ◽  
Author(s):  
M. Pitz ◽  
J. Gu ◽  
J. Soentgen ◽  
A. Peters ◽  
J. Cyrys

Abstract. During the time period of the Eyjafjallajökull volcano eruption in 2010 increased mass concentration of PM10 (particulate matter, diameter <10 μm) were observed at ground level in Augsburg, Germany. In particular on 19 and 20 April 2010 the daily PM10 limit value of 50 μg m−3 was exceeded. Because ambient particles are in general a complex mixture originating from different sources, a source apportionment method (positive matrix factorization; PMF) was applied to particle size distribution data in the size range from 3 nm to 10 μm to identify and estimate the volcanic ash contribution to the overall PM10 load in the ambient air in Augsburg. A PMF factor with relevant particle mass concentration in the size range between 1 and 4 μm (maximum at 2 μm) was associated with long range transported dust. This factor increased from background concentration to high levels simultaneously with the arrival of the volcanic ash plume in the planetary boundary layer. Hence, we assume that this factor could be used as an indicator for the impact of the Eyjafjallajökull ash plume on ground level in Augsburg. From 17 to 22 April 2010 long range transported dust factor contributed on average 30.2 % (11.6 μg m−3) to PM10. On 19 April 2010 at 20:00 UTC+1 the maximum percentage of the long range transported dust factor accounted for around 65 % (35 μg m−3) to PM10 and three hours later the maximum absolute value with around 48 μg m−3 (61 %) was observed. Additional PMF analyses for a Saharan dust event occurred in May and June 2008 suggest, that the long range transported dust factor could also be used as an indicator for Saharan dust events.


2011 ◽  
Vol 11 (5) ◽  
pp. 2209-2223 ◽  
Author(s):  
J. Gasteiger ◽  
S. Groß ◽  
V. Freudenthaler ◽  
M. Wiegner

Abstract. Volcanic ash plumes, emitted by the Eyjafjallajökull volcano (Iceland) in spring 2010, were observed by the lidar systems MULIS and POLIS in Maisach (near Munich, Germany), and by a CIMEL Sun photometer and a JenOptik ceilometer in Munich. We retrieve mass concentrations of volcanic ash from the lidar measurements; spectral optical properties, i.e. extinction coefficients, backscatter coefficients, and linear depolarization ratios, are used as input for an inversion. The inversion algorithm searches for model aerosol ensembles with optical properties that agree with the measured values within their uncertainty ranges. The non-sphericity of ash particles is considered by assuming spheroids. Optical particle properties are calculated using the T-matrix method supplemented by the geometric optics approach. The lidar inversion is applied to observations of the pure volcanic ash plume in the morning of 17 April 2010. We find 1.45 g m−2 for the ratio between the mass concentration and the extinction coefficient at λ = 532 nm, assuming an ash density of 2.6 g cm−3. The uncertainty range for this ratio is from 0.87 g m−2 to 2.32 g m−2. At the peak of the ash concentration over Maisach the extinction coefficient at λ = 532 nm was 0.75 km−1 (1-h-average), which corresponds to a maximum mass concentration of 1.1 mg m−3 (0.65 to 1.8 mg m−3). Model calculations show that particle backscatter at our lidar wavelengths (λ ≤ 1064 nm), and thus the lidar retrieval, is hardly sensitive to large particles (r ≳ 3 μm); large particles, however, may contain significant amounts of mass. Therefore, as an independent cross check of the lidar retrieval and to investigate the presence of large particles in more detail, we model ratios of sky radiances in the aureole of the Sun and compare them to measurements of the CIMEL. These ratios are sensitive to particles up to r ≈ 10 μm. This approach confirms the mass concentrations from the lidar retrieval. We conclude that synergistic utilization of high quality lidar and Sun photometer data, in combination with realistic aerosol models, is recommended for improving ash mass concentration retrievals.


2012 ◽  
Vol 12 (15) ◽  
pp. 7059-7072 ◽  
Author(s):  
P. Chazette ◽  
A. Dabas ◽  
J. Sanak ◽  
M. Lardier ◽  
P. Royer

Abstract. An Ultra-Violet Rayleigh-Mie lidar has been integrated aboard the French research aircraft Falcon20 in order to monitor the ash plume emitted by the Eyjafjallajökul volcano in April–May 2010. Three operational flights were carried out on 21 April, 12 and 16 May 2010 inside French, Spanish and British air spaces, respectively. The original purpose of the flights was to provide the French civil aviation authorities with objective information on the presence and location of the ash plume. The present paper presents the results of detailed analyses elaborated after the volcano crisis. They bear on the structure of the ash clouds and their optical properties such as the extinction coefficient and the lidar ratio. Lidar ratios were measured in the range of 43 to 50 sr, in good agreement with the ratios derived from ground-based lidar near Paris (France) in April 2010 (~48 sr). The ash signature in terms of particulate depolarization was consistent during all flights (between 34 ± 3 % and 38 ± 3%). Such a value seems to be a good identification parameter for volcanic ash. Using specific cross-sections between 0.19 and 1.1 m2 g−1, the minimum (maximal) mass concentrations in the ash plumes derived for the flights on 12 and 16 May were 140 (2300) and 250 (1500) μg m−3, respectively. It may be rather less than, or of the order of the critical level of damage (2 mg m−3) for the aircraft engines, but well above the 200 μg m−3 warning level.


2011 ◽  
Vol 11 (17) ◽  
pp. 9367-9374 ◽  
Author(s):  
M. Pitz ◽  
J. Gu ◽  
J. Soentgen ◽  
A. Peters ◽  
J. Cyrys

Abstract. During the time period of the Eyjafjallajökull volcano eruption in 2010 increased mass concentration of PM10 (particulate matter, diameter <10 μm) were observed at ground level in Augsburg, Germany. In particular on 19 and 20 April 2010 the daily PM10 limit value of 50 μg m−3 was exceeded. Because ambient particles are in general a complex mixture originating from different sources, a source apportionment method (positive matrix factorization (PMF)) was applied to particle size distribution data in the size range from 3 nm to 10 μm to identify and estimate the volcanic ash contribution to the overall PM10 load in the ambient air in Augsburg. A PMF factor with relevant particle mass concentration in the size range between 1 and 4 μm (maximum at 2 μm) was associated with long range transported dust. This factor increased from background concentration to high levels simultaneously with the arrival of the volcanic ash plume in the planetary boundary layer. Hence, we assume that this factor could be used as an indicator for the impact of the Eyjafjallajökull ash plume on ground level in Augsburg. From 17 to 22 April 2010 long range transported dust factor contributed on average 30 % (12 μg m−3) to PM10. On 19 April 2010 at 20:00 UTC+1 the maximum percentage of the long range transported dust factor accounted for around 65 % (35 μg m−3) to PM10 and three hours later the maximum absolute value with around 48 μg m−3 (61 %) was observed. Additional PMF analyses for a Saharan dust event occurred in May and June 2008 suggest, that the long range transported dust factor could also be used as an indicator for Saharan dust events.


2016 ◽  
Vol 16 (9) ◽  
pp. 5705-5720 ◽  
Author(s):  
Dimitris Balis ◽  
Maria-Elissavet Koukouli ◽  
Nikolaos Siomos ◽  
Spyridon Dimopoulos ◽  
Lucia Mona ◽  
...  

Abstract. The vulnerability of the European airspace to volcanic eruptions was brought to the attention of the public and the scientific community by the 2010 eruptions of the Icelandic volcano Eyjafjallajökull. As a consequence of this event, ash concentration thresholds replaced the “zero tolerance to ash” rule, drastically changing the requirements on satellite ash retrievals. In response to that, the ESA funded several projects aiming at creating an optimal end-to-end system for volcanic ash plume monitoring and prediction. Two of them, namely the SACS-2 and SMASH projects, developed and improved dedicated satellite-derived ash plume and sulfur dioxide level assessments. The validation of volcanic ash levels and height extracted from the GOME-2 and IASI instruments on board the MetOp-A satellite is presented in this work. EARLINET lidar measurements are compared to different satellite retrievals for two eruptive episodes in April and May 2010. Comparisons were also made between satellite retrievals and aircraft lidar data obtained with the UK's BAe-146-301 Atmospheric Research Aircraft (managed by the Facility for Airborne Atmospheric Measurements, FAAM) over the United Kingdom and the surrounding regions. The validation results are promising for most satellite products and are within the estimated uncertainties of each of the comparative data sets, but more collocation scenes would be desirable to perform a comprehensive statistical analysis. The satellite estimates and the validation data sets are better correlated for high ash optical depth values, with correlation coefficients greater than 0.8. The IASI retrievals show a better agreement concerning the ash optical depth and ash layer height when compared with the ground-based and airborne lidar data.


2021 ◽  
Vol 21 (12) ◽  
pp. 3731-3747
Author(s):  
Matthieu Plu ◽  
Guillaume Bigeard ◽  
Bojan Sič ◽  
Emanuele Emili ◽  
Luca Bugliaro ◽  
...  

Abstract. Numerical dispersion models are used operationally worldwide to mitigate the effect of volcanic ash on aviation. In order to improve the representation of the horizontal dispersion of ash plumes and of the 3D concentration of ash, a study was conducted using the MOCAGE model during the European Natural Airborne Disaster Information and Coordination System for Aviation (EUNADICS-AV) project. Source term modelling and assimilation of different data were investigated. A sensitivity study of source term formulation showed that a resolved source term, using the FPLUME plume rise model in MOCAGE, instead of a parameterised source term, induces a more realistic representation of the horizontal dispersion of the ash plume. The FPLUME simulation provides more concentrated and focused ash concentrations in the horizontal and the vertical dimensions than the other source term. The assimilation of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth has an impact on the horizontal dispersion of the plume, but this effect is rather low and local compared to source term improvement. More promising results are obtained with the continuous assimilation of ground-based lidar profiles, which improves the vertical distribution of ash and helps in reaching realistic values of ash concentrations. Using this configuration, the effect of assimilation may last for several hours and it may propagate several hundred kilometres downstream of the lidar profiles.


2021 ◽  
Author(s):  
Matthieu Plu ◽  
Guillaume Bigeard ◽  
Bojan Sič ◽  
Emanuele Emili ◽  
Luca Bugliaro ◽  
...  

Abstract. Numerical dispersion models are used operationally worldwide to mitigate the effect of volcanic ash on aviation. In order to improve the representation of the horizontal dispersion of ash plumes and of the 3D concentration of ash, a study was conducted using the MOCAGE model during the EUNADICS-AV project. Source term modelling and assimilation of different data were investigated. A sensitivity study to source term formulation showed that a resolved source term, using the FPLUME plume-rise model in MOCAGE, instead of a parameterised source term, induces a more realistic representation of the horizontal dispersion of the ash plume. The FPLUME simulation provides more concentrated and focused ash concentrations in the horizontal and the vertical dimensions than the other source term. The assimilation of MODIS Aerosol Optical Depth has an impact on the horizontal dispersion the plume, but this effect is rather low and local, compared to source term improvement. More promising results are obtained with the continuous assimilation of ground-based lidar profiles, which improves the vertical distribution of ash and helps to reach realistic values of ash concentrations. The improvement can remain several hours after and several hundred kilometers away downstream to the assimilated profiles.


Sign in / Sign up

Export Citation Format

Share Document