scholarly journals The 2009 stratospheric major warming described from synergistic use of BASCOE water vapour analyses and MLS observations

2011 ◽  
Vol 11 (10) ◽  
pp. 4689-4703 ◽  
Author(s):  
W. A. Lahoz ◽  
Q. Errera ◽  
S. Viscardy ◽  
G. L. Manney

Abstract. The record-breaking major stratospheric warming of northern winter 2009 (January–February) is studied using BASCOE (Belgian Assimilation System for Chemical ObsErvation) stratospheric water vapour analyses and MLS (Microwave Limb Sounder) water vapour observations, together with meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and potential vorticity (PV) derived from ECMWF meteorological data. We focus on the interaction between the cyclonic wintertime stratospheric polar vortex and subsidiary anticyclonic stratospheric circulations during the build-up, peak and aftermath of the major warming. We show dynamical consistency between the water vapour analysed fields and the meteorological and PV fields. Using various approaches, we use the analysed water vapour fields to estimate descent in the polar vortex during this period of between ~0.5 km day−1 and ~0.7 km day−1. New results include the analysis of water vapour during the major warming and demonstration of the benefit of assimilating MLS satellite data into the BASCOE model.

2010 ◽  
Vol 10 (10) ◽  
pp. 24699-24734
Author(s):  
W. A. Lahoz ◽  
Q. Errera ◽  
S. Viscardy ◽  
G. L. Manney

Abstract. The record–breaking major stratospheric warming of northern winter 2009 (January–February) is studied using BASCOE (Belgian Assimilation System for Chemical ObsErvation) stratospheric water vapour analyses and MLS (Microwave Limb Sounder) water vapour observations, together with meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and potential vorticity derived from ECMWF meteorological data. We focus on the interaction between the cyclonic wintertime stratospheric polar vortex and subsidiary anticyclonic stratospheric circulations during the build-up, peak and aftermath of the major warming. We show dynamical consistency between the water vapour analysed fields, and the meteorological and PV fields. New results include the analysis of water vapour during the major warming and demonstration of the benefit of assimilating MLS satellite data into the BASCOE model.


2007 ◽  
Vol 7 (1) ◽  
pp. 247-287 ◽  
Author(s):  
D. G. Feist ◽  
A. J. Geer ◽  
S. Müller ◽  
N. Kämpfer

Abstract. The European Centre for Medium-Range Weather Forecasts (ECMWF) provides global analyses of atmospheric humidity from the ground to the lower mesosphere. Unlike in the troposphere, in the stratopshere no humidity observations are assimilated. Humidity analyses here are essentially the results of a free-running model constrained by the ECMWF's well-analysed wind fields. So far only the broad-scale features of the resulting stratospheric water vapour distribution have been validated. This study provides the first in-depth comparison of stratospheric humidity from ECMWF with observations from an airborne microwave radiometer that has measured the distribution of stratospheric water vapour over an altitude range of roughly 15–60 km on several flight campaigns since 1998. The aircraft measurements provide a horizontal resolution that cannot be achieved by current satellite instruments. This study examines dynamical features in the moisture fields such as filamentation and the vortex edge, finding that features in the ERA-40 humidity analyses often do correspond to real atmospheric events that are seen in the aircraft measurements. However, the comparisons also show that in general the ECMWF model produces an unrealistically moist mesosphere. As a result it cannot replicate the descent of relatively dry mesospheric air into the polar vortex in winter and spring.


2014 ◽  
Vol 27 (20) ◽  
pp. 7796-7806 ◽  
Author(s):  
Abraham Solomon

Abstract During Northern Hemisphere winter, polar stratospheric winds and temperatures exhibit significant variability that is due to the vertical propagation of planetary-scale waves. The most dramatic intraseasonal variations in temperature are associated with sudden stratospheric warmings (SSWs), which are wave-breaking events that occur approximately every other year. This paper will introduce the concept of wave activity events (WAEs), which are periods of enhanced pseudomomentum density in the polar stratosphere that occur every year. It will be demonstrated that all SSWs are associated with WAEs; furthermore, minor warmings and many final warmings in the polar spring are also WAEs, and therefore a better understanding of these more frequent wave events can provide additional insights into stratospheric wave-induced variability. Employing the Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) for 1979–2011, 119 WAEs are identified and their life cycle is compared with that of the 23 SSWs observed during this period.


2007 ◽  
Vol 7 (20) ◽  
pp. 5291-5307 ◽  
Author(s):  
D. G. Feist ◽  
A. J. Geer ◽  
S. Müller ◽  
N. Kämpfer

Abstract. The European Centre for Medium-Range Weather Forecasts (ECMWF) provides global analyses of atmospheric humidity from the ground to the lower mesosphere. Unlike in the troposphere, in the stratosphere no humidity observations are assimilated. Humidity analyses here are essentially the results of a free-running model constrained by the ECMWF's analysed wind fields. So far only the broad-scale features of the resulting stratospheric water vapour distribution have been validated. This study provides the first in-depth comparison of stratospheric humidity from ECMWF with observations from an airborne microwave radiometer that has measured the distribution of stratospheric water vapour over an altitude range of roughly 15–60 km on several flight campaigns since 1998. The aircraft measurements provide a horizontal resolution that cannot be achieved by current satellite instruments. This study examines dynamical features in the moisture fields such as filamentation and the vortex edge, finding that features in the ERA-40 humidity analyses often do correspond to real atmospheric events that are seen in the aircraft measurements. However, the comparisons also show that in general the ECMWF model produces an unrealistically moist mesosphere. As a result it cannot replicate the descent of relatively dry mesospheric air into the polar vortex in winter and spring.


2017 ◽  
Vol 17 (18) ◽  
pp. 11521-11539 ◽  
Author(s):  
Stefan Lossow ◽  
Hella Garny ◽  
Patrick Jöckel

Abstract. The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (∼  40.5 km) in altitude. This enhanced annual variation is primarily related to the Brewer–Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.


2018 ◽  
Author(s):  
Laura Thölix ◽  
Alexey Karpechko ◽  
Leif Backman ◽  
Rigel Kivi

Abstract. Stratospheric water vapor plays a key role in radiative and chemical processes, it e.g. influences the chemical ozone loss via controlling the polar stratospheric cloud formation in the polar stratosphere. The amount of water entering the stratosphere through the tropical tropopause differs substantially between chemistry-climate models. This is because the present-day models have difficulties in capturing the whole complexity of processes that control the water transport across the tropopause. As a result there are large differences in the stratospheric water vapour between the models. In this study we investigate the sensitivity of simulated Arctic ozone loss to the amount of water, which enters the stratosphere through the tropical tropopause. We used a chemical transport model, FinROSE-CTM, forced by ERA-Interim meteorology. The water vapour concentration in the tropical tropopause was varied between 0.5 and 1.6 times the concentration in ERA-Interim, which is similar to the range seen in chemistry climate models. The water vapour changes in the tropical tropopause led to about 1.5 and 2 ppm more water vapour in the Arctic polar vortex compared to the ERA-Interim, respectively. We found that the impact of water vapour changes on ozone loss in the Arctic polar vortex depend on the meteorological conditions. Polar stratospheric clouds form in the cold conditions within the Arctic vortex, and chlorine activation on their surface lead to ozone loss. If the cold conditions persist long enough (e.g. in 2010/11), the chlorine activation is nearly complete. In this case addition of water vapour to the stratosphere increased the formation of ICE clouds, but did not increase the chlorine activation and ozone destruction significantly. In the warm winter 2012/13 the impact of water vapour concentration on ozone loss was small, because the ozone loss was mainly NOx induced. In intermediately cold conditions, e.g. 2013/14, the effect of added water vapour was more prominent than in the other studied winters. The results show that the simulated water vapour concentration in the tropical tropopause has a significant impact on the Arctic ozone loss and deserves attention in order to improve future projections of ozone layer recovery.


2014 ◽  
Vol 14 (23) ◽  
pp. 12855-12869 ◽  
Author(s):  
K. Sagi ◽  
D. Murtagh ◽  
J. Urban ◽  
H. Sagawa ◽  
Y. Kasai

Abstract. The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station observed ozone in the stratosphere with high precision from October 2009 to April 2010. Although SMILES measurements only cover latitudes from 38° S to 65° N, the combination of data assimilation methods and an isentropic advection model allows us to quantify the ozone depletion in the 2009/2010 Arctic polar winter by making use of the instability of the polar vortex in the northern hemisphere. Ozone data from both SMILES and Odin/SMR (Sub-Millimetre Radiometer) for the winter were assimilated into the Dynamical Isentropic Assimilation Model for OdiN Data (DIAMOND). DIAMOND is an off-line wind-driven transport model on isentropic surfaces. Wind data from the operational analyses of the European Centre for Medium- Range Weather Forecasts (ECMWF) were used to drive the model. In this study, particular attention is paid to the cross isentropic transport of the tracer in order to accurately assess the ozone loss. The assimilated SMILES ozone fields agree well with the limitation of noise induced variability within the SMR fields despite the limited latitude coverage of the SMILES observations. Ozone depletion has been derived by comparing the ozone field acquired by sequential assimilation with a passively transported ozone field initialized on 1 December 2009. Significant ozone loss was found in different periods and altitudes from using both SMILES and SMR data: The initial depletion occurred at the end of January below 550 K with an accumulated loss of 0.6–1.0 ppmv (approximately 20%) by 1 April. The ensuing loss started from the end of February between 575 K and 650 K. Our estimation shows that 0.8–1.3 ppmv (20–25 %) of O3 has been removed at the 600 K isentropic level by 1 April in volume mixing ratio (VMR).


2009 ◽  
Vol 9 (22) ◽  
pp. 8771-8783 ◽  
Author(s):  
G. Masiello ◽  
C. Serio ◽  
A. Carissimo ◽  
G. Grieco ◽  
M. Matricardi

Abstract. Retrieval products for temperature, water vapour and ozone have been obtained from spectral radiances measured by the Infrared Atmospheric Sounding Interferometer flying onboard the first European Meteorological Operational satellite. These products have been used to check the consistency of the forward model and its accuracy and the expected retrieval performance. The study has been carried out using a research-oriented forward-inverse methodology, called φ-IASI, that the authors have specifically developed for the new sounding interferometer. The performance of the forward-inversion strategy has been assessed by comparing the retrieved profiles to profiles of temperature, water vapour and ozone obtained by co-locating in space and time profiles from radiosonde observations and from the European Centre for Medium-Range Weather Forecasts analysis. Spectral residuals have also been computed and analyzed to assess the quality of the forward model. Two versions of the high-resolution transmission molecular absorption database have been used, which mostly differ for ozone absorption line parameters, line and continuum absorption of both CO2 and H2O molecules. Their performance has been assessed by inter-comparing the results, and a consistent improvement in the spectral residual has been found when using the most updated release.


2020 ◽  
Author(s):  
Rongcai Ren ◽  
Xin Xia ◽  
Jian Rao

<p>This study uses the stratosphere-resolved Whole Atmosphere Community Climate Model to demonstrate the “independent” and “dependent” topographic forcing from the topography of East Asia (EA) and North American (NA), and their “joint” forcing in the northern winter stratosphere. The mutual interference between the EA and NA forcing is also demonstrated. Specifically, without EA, an independent NA can also, like EA, induce a severe polar warming and weakening of the stratospheric polar vortex. While EA favors a displacement of the polar vortex toward Eurasia, NA favors a displacement toward the North America–Atlantic region. However, the independent-EA-forced weakening effect on the polar vortex can be largely decreased and changes to a location displacement when NA exists, and the interference the other way around is even more critical, being able to completely offset the independent-NA-forced effect, because EA can substantively obstruct NA’s effect on the tropospheric wave pattern over the Eurasia–Pacific region. The much stronger/weaker interference of EA/NA is associated with its stronger/weaker downstream weakening effect on the zonal flow that impinges on NA/EA. The mutual interference always tends to further destruct the upward wave fluxes over the eastern North Pacific and enhance the downward wave fluxes over NA. The overall changes in upward wave fluxes, as well as that in the Rossby stationary wavenumber responsible for the stratospheric changes, are related to changes in the zonal-mean flow pattern. The joint effects of EA and NA, rather than being a linear superimposition of their independent effects, are largely dominated by the effects of EA.</p>


2015 ◽  
Vol 15 (7) ◽  
pp. 3873-3892 ◽  
Author(s):  
Z. D. Lawrence ◽  
G. L. Manney ◽  
K. Minschwaner ◽  
M. L. Santee ◽  
A. Lambert

Abstract. We present a comprehensive comparison of polar processing diagnostics derived from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Research and Applications (MERRA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). We use diagnostics that focus on meteorological conditions related to stratospheric chemical ozone loss based on temperatures, polar vortex dynamics, and air parcel trajectories to evaluate the effects these reanalyses might have on polar processing studies. Our results show that the agreement between MERRA and ERA-Interim changes significantly over the 34 years from 1979 to 2013 in both hemispheres and in many cases improves. By comparing our diagnostics during five time periods when an increasing number of higher-quality observations were brought into these reanalyses, we show how changes in the data assimilation systems (DAS) of MERRA and ERA-Interim affected their meteorological data. Many of our stratospheric temperature diagnostics show a convergence toward significantly better agreement, in both hemispheres, after 2001 when Aqua and GOES (Geostationary Operational Environmental Satellite) radiances were introduced into the DAS. Other diagnostics, such as the winter mean volume of air with temperatures below polar stratospheric cloud formation thresholds (VPSC) and some diagnostics of polar vortex size and strength, do not show improved agreement between the two reanalyses in recent years when data inputs into the DAS were more comprehensive. The polar processing diagnostics calculated from MERRA and ERA-Interim agree much better than those calculated from earlier reanalysis data sets. We still, however, see fairly large differences in many of the diagnostics in years prior to 2002, raising the possibility that the choice of one reanalysis over another could significantly influence the results of polar processing studies. After 2002, we see overall good agreement among the diagnostics, which demonstrates that the ERA-Interim and MERRA reanalyses are equally appropriate choices for polar processing studies of recent Arctic and Antarctic winters.


Sign in / Sign up

Export Citation Format

Share Document