scholarly journals Middle atmosphere water vapour and dynamical features in aircraft measurements and ECMWF analyses

2007 ◽  
Vol 7 (20) ◽  
pp. 5291-5307 ◽  
Author(s):  
D. G. Feist ◽  
A. J. Geer ◽  
S. Müller ◽  
N. Kämpfer

Abstract. The European Centre for Medium-Range Weather Forecasts (ECMWF) provides global analyses of atmospheric humidity from the ground to the lower mesosphere. Unlike in the troposphere, in the stratosphere no humidity observations are assimilated. Humidity analyses here are essentially the results of a free-running model constrained by the ECMWF's analysed wind fields. So far only the broad-scale features of the resulting stratospheric water vapour distribution have been validated. This study provides the first in-depth comparison of stratospheric humidity from ECMWF with observations from an airborne microwave radiometer that has measured the distribution of stratospheric water vapour over an altitude range of roughly 15–60 km on several flight campaigns since 1998. The aircraft measurements provide a horizontal resolution that cannot be achieved by current satellite instruments. This study examines dynamical features in the moisture fields such as filamentation and the vortex edge, finding that features in the ERA-40 humidity analyses often do correspond to real atmospheric events that are seen in the aircraft measurements. However, the comparisons also show that in general the ECMWF model produces an unrealistically moist mesosphere. As a result it cannot replicate the descent of relatively dry mesospheric air into the polar vortex in winter and spring.

2007 ◽  
Vol 7 (1) ◽  
pp. 247-287 ◽  
Author(s):  
D. G. Feist ◽  
A. J. Geer ◽  
S. Müller ◽  
N. Kämpfer

Abstract. The European Centre for Medium-Range Weather Forecasts (ECMWF) provides global analyses of atmospheric humidity from the ground to the lower mesosphere. Unlike in the troposphere, in the stratopshere no humidity observations are assimilated. Humidity analyses here are essentially the results of a free-running model constrained by the ECMWF's well-analysed wind fields. So far only the broad-scale features of the resulting stratospheric water vapour distribution have been validated. This study provides the first in-depth comparison of stratospheric humidity from ECMWF with observations from an airborne microwave radiometer that has measured the distribution of stratospheric water vapour over an altitude range of roughly 15–60 km on several flight campaigns since 1998. The aircraft measurements provide a horizontal resolution that cannot be achieved by current satellite instruments. This study examines dynamical features in the moisture fields such as filamentation and the vortex edge, finding that features in the ERA-40 humidity analyses often do correspond to real atmospheric events that are seen in the aircraft measurements. However, the comparisons also show that in general the ECMWF model produces an unrealistically moist mesosphere. As a result it cannot replicate the descent of relatively dry mesospheric air into the polar vortex in winter and spring.


2019 ◽  
Author(s):  
Franziska Schranz ◽  
Brigitte Tschanz ◽  
Rolf Rüfenacht ◽  
Klemens Hocke ◽  
Mathias Palm ◽  
...  

Abstract. We use 3 years of water vapour and ozone measurements to analyse dynamical events in the polar middle atmosphere such as sudden stratospheric warmings (SSW), polar vortex shifts, water vapour descent rates and periodicities. The measurements were performed with the two ground-based microwave radiometers MIAWARA-C and GROMOS-C which are co-located at the AWIPEV research base at Ny-Ålesund, Svalbard (79° N, 12° E) since September 2015. The almost continuous datasets of water vapour and ozone are characterised by a high time resolution in the order of hours. A thorough intercomparison of these datasets with models and measurements from satellite, ground-based and in-situ instruments was performed. In the upper stratosphere and lower mesosphere the MIAWARA-C profiles agree within 5 % with SD-WACCM simulations and ACE-FTS measurements whereas AuraMLS measurements show an average offset of 10–15 % depending on altitude but constant in time. Stratospheric GROMOS-C profiles are within 5 % of the satellite instruments AuraMLS and ACE-FTS and the ground-based microwave radiometer OZORAM which is also located at Ny-Ålesund. During these first three years of the measurement campaign typical phenomena of the Arctic middle atmosphere took place and we analysed their signatures in the water vapour and ozone datasets. Inside of the polar vortex in autumn we found the descent rate of mesospheric water vapour to be 435 m/day on average. In early 2017 distinct increases in mesospheric water vapour of about 2 ppm were observed when the polar vortex was displaced and midlatitude air was brought to Ny-Ålesund. Two major sudden stratospheric warmings took place in March 2016 and February 2018 where ozone enhancements of up to 4 ppm were observed. The zonal wind reversals accompanying a major SSW were captured in the GROMOS-C wind profiles which are retrieved from the ozone spectra. After the SSW in February 2018 the polar vortex re-established and the water vapour descent rate in the mesosphere was 355 m/day. In the water vapour and ozone time series signatures of atmospheric waves with periods close to 2, 5, 10 and 16 days were found.


2008 ◽  
Vol 8 (1) ◽  
pp. 1635-1671 ◽  
Author(s):  
S. C. Müller ◽  
N. Kämpfer ◽  
D. G. Feist ◽  
A. Haefele ◽  
M. Milz ◽  
...  

Abstract. We present the validation of a water vapour dataset obtained by the Airborne Microwave Stratospheric Observing System AMSOS, a passive microwave radiometer operating at 183 GHz. Vertical profiles are retrieved from spectra by an optimal estimation method. The useful vertical range lies in the upper troposphere up to the mesosphere with an altitude resolution of 8 to 16 km and a horizontal resolution of about 57 km. Flight campaigns were performed once a year from 1998 to 2006 measuring the latitudinal distribution of water vapour from the tropics to the polar regions. The obtained profiles show clearly the main features of stratospheric water vapour in all latitudinal regions. Data are validated against a set of instruments comprising satellite, ground-based, airborne remote sensing and in-situ instruments. It appears that AMSOS profiles have a dry bias of 3–20%, when compared to satellite experiments. A good agreement with a difference of 3.3% was found between AMSOS and in-situ hygrosondes FISH and FLASH and an excellent matching of the lidar measurements from the DIAL instrument in the short overlap region in the upper troposphere.


2019 ◽  
Vol 19 (15) ◽  
pp. 9927-9947 ◽  
Author(s):  
Franziska Schranz ◽  
Brigitte Tschanz ◽  
Rolf Rüfenacht ◽  
Klemens Hocke ◽  
Mathias Palm ◽  
...  

Abstract. We used 3 years of water vapour and ozone measurements to study the dynamics in the Arctic middle atmosphere. We investigated the descent of water vapour within the polar vortex, major and minor sudden stratospheric warmings and periodicities at Ny-Ålesund. The measurements were performed with the two ground-based microwave radiometers MIAWARA-C and GROMOS-C, which have been co-located at the AWIPEV research base at Ny-Ålesund, Svalbard (79∘ N, 12∘ E), since September 2015. Both instruments belong to the Network for the Detection of Atmospheric Composition Change (NDACC). The almost continuous datasets of water vapour and ozone are characterized by a high time resolution of the order of hours. A thorough intercomparison of these datasets with models and measurements from satellite, ground-based and in situ instruments was performed. In the upper stratosphere and lower mesosphere the MIAWARA-C water vapour profiles agree within 5 % with SD-WACCM simulations and ACE-FTS measurements on average, whereas AuraMLS measurements show an average offset of 10 %–15 % depending on altitude but constant in time. Stratospheric GROMOS-C ozone profiles are on average within 6 % of the SD-WACCM model, the AuraMLS and ACE-FTS satellite instruments and the OZORAM ground-based microwave radiometer which is also located at Ny-Ålesund. During these first 3 years of the measurement campaign typical phenomena of the Arctic middle atmosphere took place, and we analysed their signatures in the water vapour and ozone measurements. Two major sudden stratospheric warmings (SSWs) took place in March 2016 and February 2018 and three minor warmings were observed in early 2017. Ozone-rich air was brought to the pole and during the major warmings ozone enhancements of up to 4 ppm were observed. The reversals of the zonal wind accompanying a major SSW were captured in the GROMOS-C wind profiles which are retrieved from the ozone spectra. After the SSW in February 2018 the polar vortex re-established and the water vapour descent rate in the mesosphere was 355 m d−1. Inside of the polar vortex in autumn we found the descent rate of mesospheric water vapour from MIAWARA-C to be 435 m d−1 on average. We find that the water vapour descent rate from SD-WACCM and the vertical velocity w‾* of the residual mean meridional circulation from SD-WACCM are substantially higher than the descent rates of MIAWARA-C. w‾* and the zonal mean water vapour descent rate from SD-WACCM agree within 10 % after the SSW, whereas in autumn w‾* is up to 40 % higher. We further present an overview of the periodicities in the water vapour and ozone measurements and analysed seasonal and interannual differences.


2011 ◽  
Vol 11 (10) ◽  
pp. 4689-4703 ◽  
Author(s):  
W. A. Lahoz ◽  
Q. Errera ◽  
S. Viscardy ◽  
G. L. Manney

Abstract. The record-breaking major stratospheric warming of northern winter 2009 (January–February) is studied using BASCOE (Belgian Assimilation System for Chemical ObsErvation) stratospheric water vapour analyses and MLS (Microwave Limb Sounder) water vapour observations, together with meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and potential vorticity (PV) derived from ECMWF meteorological data. We focus on the interaction between the cyclonic wintertime stratospheric polar vortex and subsidiary anticyclonic stratospheric circulations during the build-up, peak and aftermath of the major warming. We show dynamical consistency between the water vapour analysed fields and the meteorological and PV fields. Using various approaches, we use the analysed water vapour fields to estimate descent in the polar vortex during this period of between ~0.5 km day−1 and ~0.7 km day−1. New results include the analysis of water vapour during the major warming and demonstration of the benefit of assimilating MLS satellite data into the BASCOE model.


2010 ◽  
Vol 10 (10) ◽  
pp. 24699-24734
Author(s):  
W. A. Lahoz ◽  
Q. Errera ◽  
S. Viscardy ◽  
G. L. Manney

Abstract. The record–breaking major stratospheric warming of northern winter 2009 (January–February) is studied using BASCOE (Belgian Assimilation System for Chemical ObsErvation) stratospheric water vapour analyses and MLS (Microwave Limb Sounder) water vapour observations, together with meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and potential vorticity derived from ECMWF meteorological data. We focus on the interaction between the cyclonic wintertime stratospheric polar vortex and subsidiary anticyclonic stratospheric circulations during the build-up, peak and aftermath of the major warming. We show dynamical consistency between the water vapour analysed fields, and the meteorological and PV fields. New results include the analysis of water vapour during the major warming and demonstration of the benefit of assimilating MLS satellite data into the BASCOE model.


2008 ◽  
Vol 8 (12) ◽  
pp. 3169-3183 ◽  
Author(s):  
S. C. Müller ◽  
N. Kämpfer ◽  
D. G. Feist ◽  
A. Haefele ◽  
M. Milz ◽  
...  

Abstract. We present the validation of a water vapour dataset obtained by the Airborne Microwave Stratospheric Observing System AMSOS, a passive microwave radiometer operating at 183 GHz. Vertical profiles are retrieved from spectra by an optimal estimation method. The useful vertical range lies in the upper troposphere up to the mesosphere with an altitude resolution of 8 to 16 km and a horizontal resolution of about 57 km. Flight campaigns were performed once a year from 1998 to 2006 measuring the latitudinal distribution of water vapour from the tropics to the polar regions. The obtained profiles show clearly the main features of stratospheric water vapour in all latitudinal regions. Data are validated against a set of instruments comprising satellite, ground-based, airborne remote sensing and in-situ instruments. It appears that AMSOS profiles have a dry bias of 0 to –20%, when compared to satellite experiments. Also a comparison between AMSOS and in-situ hygrosondes FISH and FLASH have been performed. A matching in the short overlap region in the upper troposphere of the lidar measurements from the DIAL instrument and the AMSOS dataset allowed water vapour profiling from the middle troposphere up to the mesosphere.


2016 ◽  
Author(s):  
Klemens Hocke ◽  
Franziska Schranz ◽  
Eliane Maillard Barras ◽  
Lorena Moreira ◽  
Niklaus Kämpfer

Abstract. Observation and simulation of individual ozone streamers are important for the description and understanding of nonlinear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above Central Europe on December 4, 2015. The GROunbased Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude from December 1 to December 4. A similar ozone increase is simulated by the Specified Dynamics-Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and the timing of an ozone streamer (large-scale tongue like structure) extending from the subtropics in Northern America over the Atlantic to Central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m/s inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge region of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the Northern mid-latitude winter stratosphere.


2021 ◽  
Author(s):  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Philippe Keckhut

<p>Sudden Stratospheric Warming (SSW) is the most spectacular dynamic event occurring in the middle atmosphere. It can lead to a warming of the winter polar stratosphere by a few tens of K in one to two weeks and a reversal of the stratospheric circulation from wintertime prevailing westerly winds to easterly winds similar to summer conditions. This strong modification of the stratospheric circulation has consequences for several applications, including the modification of the stratospheric infrasound guide. Depending on the date of the SSW, the westerly circulation can be re-established if the SSW occurs in mid-winter or the summer easterly circulation can be definitively established if the SSW occurs in late winter. In the latter case it is called Final Warming (FW). Each year, it is possible to define the date of the FW as the date of the final inversion of the zonal wind at 60°N - 10 hPa . If the FW is associated with a strong peak of planetary wave activity and a rapid increase in polar temperature, it is classified as dynamic FW. If the transition to the easterly wind is smooth without planetary wave activity, the FW is classified as radiative.</p><p>The analysis of the ERA5 database, which has recently been extended to 1950 (71 years of data), allowed a statistical analysis of the evolution of the stratosphere in winter. The main conclusions of this study will be presented :</p><p>- the state of the polar vortex in a given month is anticorrelated with its state 2 to 3 months earlier. The beginning of winter is anticorrelated with mid-winter and mid-winter is anticorrelated with the end of winter;</p><p>- dynamic FWs occur early in the season (March - early April) and are associated with a strong positive polar temperature anomaly, while radiative FWs occur later (late April - early May) without a polar temperature anomaly;</p><p>- the summer stratosphere (polar temperature and zonal wind) keeps the memory of its state in April-May at the time of FW at least until July .</p><p>These results could help to improve medium-range weather forecasts in the Northern Hemisphere due to the strong dynamic coupling between the troposphere and stratosphere during SSW events.</p>


2018 ◽  
Vol 18 (11) ◽  
pp. 8331-8351 ◽  
Author(s):  
Stefan Lossow ◽  
Dale F. Hurst ◽  
Karen H. Rosenlof ◽  
Gabriele P. Stiller ◽  
Thomas von Clarmann ◽  
...  

Abstract. Trend estimates with different signs are reported in the literature for lower stratospheric water vapour considering the time period between the late 1980s and 2010. The NOAA (National Oceanic and Atmospheric Administration) frost point hygrometer (FPH) observations at Boulder (Colorado, 40.0° N, 105.2° W) indicate positive trends (about 0.1 to 0.45 ppmv decade−1). On the contrary, negative trends (approximately −0.2 to −0.1 ppmv decade−1) are derived from a merged zonal mean satellite data set for a latitude band around the Boulder latitude. Overall, the trend differences between the two data sets range from about 0.3 to 0.5 ppmv decade−1, depending on altitude. It has been proposed that a possible explanation for these discrepancies is a different temporal behaviour at Boulder and the zonal mean. In this work we investigate trend differences between Boulder and the zonal mean using primarily simulations from ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC), WACCM (Whole Atmosphere Community Climate Model), CMAM (Canadian Middle Atmosphere Model) and CLaMS (Chemical Lagrangian Model of the Stratosphere). On shorter timescales we address this aspect also based on satellite observations from UARS/HALOE (Upper Atmosphere Research Satellite/Halogen Occultation Experiment), Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) and Aura/MLS (Microwave Limb Sounder). Overall, both the simulations and observations exhibit trend differences between Boulder and the zonal mean. The differences are dependent on altitude and the time period considered. The model simulations indicate only small trend differences between Boulder and the zonal mean for the time period between the late 1980s and 2010. These are clearly not sufficient to explain the discrepancies between the trend estimates derived from the FPH observations and the merged zonal mean satellite data set. Unless the simulations underrepresent variability or the trend differences originate from smaller spatial and temporal scales than resolved by the model simulations, trends at Boulder for this time period should also be quite representative for the zonal mean and even other latitude bands. Trend differences for a decade of data are larger and need to be kept in mind when comparing results for Boulder and the zonal mean on this timescale. Beyond that, we find that the trend estimates for the time period between the late 1980s and 2010 also significantly differ among the simulations. They are larger than those derived from the merged satellite data set and smaller than the trend estimates derived from the FPH observations.


Sign in / Sign up

Export Citation Format

Share Document