scholarly journals Manchester Ice Nucleus Counter (MINC) measurements from the 2007 International workshop on Comparing Ice nucleation Measuring Systems (ICIS-2007)

2011 ◽  
Vol 11 (1) ◽  
pp. 53-65 ◽  
Author(s):  
H. M. Jones ◽  
M. J. Flynn ◽  
P. J. DeMott ◽  
O. Möhler

Abstract. An ice nucleus counter was developed and constructed to enable investigation of potential ice nucleating materials. The Manchester Ice Nucleus Chamber (MINC) is a concentric-cylinder continuous flow diffusion chamber (CFDC). A full explanation of the MINC instrument is given here, along with first results and a comparison to an established instrument of similar design (Colorado State University CFDC) during sampling of common ice nucleating aerosols at the 2007 International workshop on Comparing Ice nucleation Measuring Systems (ICIS-2007). MINC and CSU-CFDC detected the onset of ice nucleation under similar conditions of temperature and supersaturation for several different types of ice nuclei. Comparisons of the ratio of ice nuclei to total aerosol concentrations as a function of supersaturation with respect to water (SSw) showed agreement within one order of magnitude. Possible reasons for differences between the two instruments relating to differences in their design are discussed, along with suggestions to future improvements to the current design.

2010 ◽  
Vol 10 (8) ◽  
pp. 19277-19307
Author(s):  
H. M. Jones ◽  
M. J. Flynn ◽  
P. J. DeMott ◽  
O. Möhler

Abstract. An ice nucleus counter was developed and constructed to enable investigation of potential ice nucleating materials. The Manchester Ice Nucleus Chamber (MINC) is a concentric-cylinder continuous flow diffusion chamber (CFDC). A full explanation of the MINC instrument is given here, along with first results and a comparison to an established instrument of similar design (Colorado State University CFDC) during sampling of common ice nucleating aerosols at the 2007 International workshop on Comparing Ice nucleation Measuring Systems (ICIS-2007). Both instruments detected the onset of ice nucleation under similar conditions of temperature and supersaturation for several different types of ice nuclei. Comparisons of the ratio of ice nuclei to total aerosol concentrations as a function of relative humidity (RH) showed agreement within one order of magnitude. Possible reasons for differences between the two instruments relating to differences in their design are discussed, along with suggestions to future improvements to the current design.


2010 ◽  
Vol 10 (9) ◽  
pp. 20857-20886 ◽  
Author(s):  
Z. A. Kanji ◽  
P. J. DeMott ◽  
O. Möhler ◽  
J. P. D. Abbatt

Abstract. The University of Toronto continuous flow diffusion chamber (UT-CFDC) was used to study heterogeneous ice nucleation at the International Workshop on Comparing Ice Nucleation Measuring Systems (ICIS 2007) which also represented the 4th ice nucleation workshop, on 14–28 September 2007. One goal of the workshop was to inter-compare different ice nucleation measurement techniques using the same aerosol sample source and preparation method. The aerosol samples included four types of desert mineral dust, graphite soot particles, and live and dead bacterial cells (Snomax®). This paper focuses on the UT-CFDC results, with a comparison to techniques of established heritage including the Colorado State CFDC and the AIDA expansion chamber. Good agreement was found between the different instruments with a few specific differences attributed to the variation in how onset of ice formation is defined between the instruments. It was found that when efficiency of ice formation is based on the lowest onset relative humidity, Snomax® particles were most efficient followed by the desert dusts and then soot. For all aerosols, deposition mode freezing was only observed for T < 245 K except for the dead bacteria where freezing occurred below water saturation as warm as 263 K.


2013 ◽  
Vol 13 (22) ◽  
pp. 11175-11185 ◽  
Author(s):  
J. D. Yakobi-Hancock ◽  
L. A. Ladino ◽  
J. P. D. Abbatt

Abstract. Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at −40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.


2005 ◽  
Vol 5 (3) ◽  
pp. 3391-3436 ◽  
Author(s):  
C. M. Archuleta ◽  
P. J. DeMott ◽  
S. M. Kreidenweis

Abstract. This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC) operated to expose size-selected aerosol particles to temperatures between −45 and −60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.


2014 ◽  
Vol 14 (11) ◽  
pp. 5529-5546 ◽  
Author(s):  
H. Wex ◽  
P. J. DeMott ◽  
Y. Tobo ◽  
S. Hartmann ◽  
M. Rösch ◽  
...  

Abstract. Kaolinite particles from two different sources (Fluka and Clay Minerals Society (CMS)) were examined with respect to their ability to act as ice nuclei (IN). This was done in the water-subsaturated regime where often deposition ice nucleation is assumed to occur, and for water-supersaturated conditions, i.e., in the immersion freezing mode. Measurements were done using a flow tube (the Leipzig Aerosol Cloud Interaction Simulator, LACIS) and a continuous-flow diffusion chamber (CFDC). Pure and coated particles were used, with coating thicknesses of a few nanometers or less, where the coating consisted of levoglucosan, succinic acid or sulfuric acid. In general, it was found that the coatings strongly reduced deposition ice nucleation. Remaining ice formation in the water-subsaturated regime could be attributed to immersion freezing, with particles immersed in concentrated solutions formed by the coatings. In the immersion freezing mode, ice nucleation rate coefficients jhet from both instruments agreed well with each other, particularly when the residence times in the instruments were accounted for. Fluka kaolinite particles coated with either levoglucosan or succinic acid showed the same IN activity as pure Fluka kaolinite particles; i.e., it can be assumed that these two types of coating did not alter the ice-active surface chemically, and that the coatings were diluted enough in the droplets that were formed prior to the ice nucleation, so that freezing point depression was negligible. However, Fluka kaolinite particles, which were either coated with pure sulfuric acid or were first coated with the acid and then exposed to additional water vapor, both showed a reduced ability to nucleate ice compared to the pure particles. For the CMS kaolinite particles, the ability to nucleate ice in the immersion freezing mode was similar for all examined particles, i.e., for the pure ones and the ones with the different types of coating. Moreover, jhet derived for the CMS kaolinite particles was comparable to jhet derived for Fluka kaolinite particles coated with sulfuric acid. This is suggestive for the Fluka kaolinite possessing a type of ice-nucleating surface feature which is not present on the CMS kaolinite, and which can be destroyed by reaction with sulfuric acid. This might be potassium feldspar.


2007 ◽  
Vol 7 (14) ◽  
pp. 3923-3931 ◽  
Author(s):  
A. Salam ◽  
U. Lohmann ◽  
G. Lesins

Abstract. The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100%) and diluted ammonia gas (25 ppm) at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw) and 5 to 8 times at 100% RHw for 120 min exposure time compared to unexposed montmorillonite within our experimental conditions. The percentages of active ice nuclei were 2 to 8 times higher at 90% RHw and 2 to 7 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 15°C higher than for unexposed montmorillonite particles at 90% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 10°C warmer than unexposed montmorillonite at 90% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles suggesting that the ammonia is chemically bound to the montmorillonite particle. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.


2005 ◽  
Vol 5 (10) ◽  
pp. 2617-2634 ◽  
Author(s):  
C. M. Archuleta ◽  
P. J. DeMott ◽  
S. M. Kreidenweis

Abstract. This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC) operated to expose size-selected aerosol particles to temperatures between -45 and -60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.


2009 ◽  
Vol 2 (1) ◽  
pp. 153-179 ◽  
Author(s):  
G. Kulkarni ◽  
S. Dobbie ◽  
J. McQuaid

Abstract. A new Thermal Gradient ice nucleation Diffusion Chamber (TGDC) capable of investigating ice nucleation efficiency of atmospherically important aerosols, termed Ice Nuclei (IN), has been designed, constructed and validated. The TGDC can produce a range of supersaturations with respect to ice (SSi) over the temperature range of −10 to −34°C for sufficiently long time needed to observe the ice nucleation by the aerosol particles. The novel aspect of this new TGDC is that the chamber is run in static mode with aerosol particles supported on a Teflon substrate, which can be raised and lowered in a controlled way through the SSi profile within the chamber, and nucleation events are directly observed using digital photography. The TGDC consists of two ice coated plates to which a thermal gradient is applied to produce the range of SSi. The design of the TGDC gives the ability to understand time-related ice nucleation event information and to perform experiments at different temperatures and SSi conditions for different IN without changing the thermal gradient within the TGDC. The temperature and SSi conditions of the experimental system are validated by observing (NH4)2SO4 deliquescence and the results are in good agreement with the literature data. First results are presented of the onset ice nucleation for mineral dust sampled from the Saharan Desert, including images of nucleation and statistical distributions of onset ice nucleation SSi as a function of temperature. This paper illustrates how useful this new TGDC is for process level studies of ice nucleation and more experimental investigations are needed to better quantify the role of ice formation in the atmosphere.


2016 ◽  
Author(s):  
S. Garimella ◽  
T. B. Kristensen ◽  
K. Ignatius ◽  
A. Welti ◽  
J. Voigtländer ◽  
...  

Abstract. The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nuclei counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. A machine learning approach for analyzing depolarization data from the SPIN Optical Particle Counter is also presented. Experiments with ammonium sulfate are used to investigate homogeneous freezing and droplet breakthrough, experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation, and results are compared to those from the literature. Overall, we report that the SPIN is able to reproduce previous CFDC ice nucleation measurements.


Sign in / Sign up

Export Citation Format

Share Document