scholarly journals Feldspar minerals as efficient deposition ice nuclei

2013 ◽  
Vol 13 (22) ◽  
pp. 11175-11185 ◽  
Author(s):  
J. D. Yakobi-Hancock ◽  
L. A. Ladino ◽  
J. P. D. Abbatt

Abstract. Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically relevant mineral samples have been studied, using a continuous flow diffusion chamber at −40.0 ± 0.3 °C and particles size-selected at 200 nm. By focussing on using the same experimental procedure for all experiments, a relative ranking of the ice nucleating abilities of the samples was achieved. In addition, the ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi) 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts, it was found that the feldspar minerals (particularly orthoclase) and some clays (particularly kaolinite) were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

2013 ◽  
Vol 13 (6) ◽  
pp. 17299-17326 ◽  
Author(s):  
J. D. Yakobi-Hancock ◽  
L. A. Ladino ◽  
J. P. D. Abbatt

Abstract. Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically-relevant mineral samples have been studied, using a continuous flow diffusion chamber at −40.0 ± 0.3 °C. The same particle size (200 nm) and particle preparation procedure were used throughout. The ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD) and Mojave Desert Dust (MDD), and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN), requiring a critical relative humidity with respect to ice (RHi) of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi 126.3 ± 3.4%) and ATD (RHi 129.5 ± 5.1%) have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite), non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz), and feldspar minerals (orthoclase, plagioclase) present in the atmospheric dusts it was found that the feldspar minerals (particularly orthoclase), and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase) may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.


2013 ◽  
Vol 13 (6) ◽  
pp. 16367-16456 ◽  
Author(s):  
C. Marcolli

Abstract. Heterogeneous ice nucleation is an important mechanism for the glaciation of mixed phase clouds and may also be relevant for cloud formation and dehydration at the cirrus cloud level. It is thought to proceed through different mechanisms, namely contact, condensation, immersion and deposition nucleation. Supposedly, deposition nucleation is the only pathway which does not involve liquid water but occurs by direct water vapor deposition on a surface. This study challenges this classical view by putting forward the hypothesis that what is called deposition nucleation is in fact homogeneous or immersion nucleation occurring in pores and cavities that may form between aggregated primary particles and fill with water at relative humidity RHw < 100% because of the inverse Kelvin effect. Evidence for this hypothesis of pore condensation and freezing (PCF) originates from a number of only loosely connected scientific areas. The prime example for PCF is ice nucleation in clay minerals and mineral dusts, for which the data base is best. Studies on freezing in confinement carried out on mesoporous silica materials such as SBA-15, SBA-16, MCM-41, zeolites and KIT have shown that homogeneous ice nucleation occurs abruptly at T=230–235 K in pores with diameters (D) of 3.5–4 nm or larger but only gradually at T=210–230 K in pores with D=2.5–3.5 nm. Melting temperatures in pores are depressed by an amount that can be described by the Gibbs–Thomson equation. Water adsorption isotherms of MCM-41 show that pores with D=3.5–4 nm fill with water at RHw = 56–60% in accordance with an inverse Kelvin effect. Water in such pores should freeze homogeneously for T < 235 K even before relative humidity with respect to ice (RHi) reaches ice saturation. Ice crystal growth by water vapor deposition from the gas phase is therefore expected to set in as soon as RHw > 100%. Pores with D > 7.5 nm fill with water at RHi > 100% for T < 235 K and are likely to freeze homogeneously as soon as they are filled with water. Water in pores can freeze in immersion mode at T > 235 K if the pore walls contain an active site. Pore analysis of clay minerals shows that kaolinites exhibit pore structures with pore diameters of 20–50 nm. The mesoporosity of illites and montmorillonites is characterized by pores with T = 2–5 nm. The number and size of pores is distinctly increased in acid treated montmorillonites like K10. Many clay minerals and mineral dusts show a strong increase in ice nucleation efficiency when temperature is decreased below 235 K. Such an increase is difficult to explain when ice nucleation is supposed to occur by a deposition mechanism, but evident when assuming freezing in pores, because for homogeneous ice nucleation only small pore volumes are needed, while heterogeneous ice nucleation requires larger pore structures to contain at least one active site for immersion nucleation. Together, these pieces of evidence strongly suggest that ice nucleation within pores should be the prevailing freezing mechanism of clay minerals for RHw below water saturation. Extending the analysis to other types of ice nuclei shows that freezing in pores and cracks is probably the prevailing ice nucleation mechanism for glassy and volcanic ash aerosols at RHw below water saturation. Freezing of water in carbon nanotubes might be of significance for ice nucleation by soot aerosols. No case could be identified that gives clear evidence of ice nucleation by water vapor deposition on a solid surface. Inspection of ice nuclei with a close lattice match to ice, such as silver iodide or SnomaxTM, show that for high ice nucleation efficiency below water saturation the presence of impurities or cracks on the surface may be essential. Soluble impurities promote the formation of a liquid phase below water saturation in patches on the surface or as a complete surface layer that offers an environment for immersion freezing. If porous aerosol particles come in contact with semivolatile vapors, these will condense preferentially in pores before a coating on the surface of the particles is formed. A pore partially filled with condensed species attracts water at lower RHw than an empty pore, but the aqueous solution that forms in the pore will freeze at a higher RHi than pure water. The ice nucleation ability of pores completely filled with condensed organic species might be totally impeded. Pores might also be important for preactivation, the capability of a particle to nucleate ice at lower RHi in subsequent experiments when compared to the first initial ice nucleation event. Preactivation has often been explained by persistence of ice embryos at specific sites like dislocations, steps, kinks or pores. However, it is not clear how such features can preserve an ice embryo at RHi < 100%. Rather, ice embryos could be preserved when embedded in water. To keep liquid water at RHw well below 100%, narrow pores are needed but to avoid a strong melting point depression large pores are favorable. A narrow pore opening and a large inner volume are combined in "ink bottle" pores. Such "ink bottle" pores would be suited to preserve ice at RHi < 100% and can arise e.g. in spaces between aggregated particles.


2011 ◽  
Vol 11 (1) ◽  
pp. 53-65 ◽  
Author(s):  
H. M. Jones ◽  
M. J. Flynn ◽  
P. J. DeMott ◽  
O. Möhler

Abstract. An ice nucleus counter was developed and constructed to enable investigation of potential ice nucleating materials. The Manchester Ice Nucleus Chamber (MINC) is a concentric-cylinder continuous flow diffusion chamber (CFDC). A full explanation of the MINC instrument is given here, along with first results and a comparison to an established instrument of similar design (Colorado State University CFDC) during sampling of common ice nucleating aerosols at the 2007 International workshop on Comparing Ice nucleation Measuring Systems (ICIS-2007). MINC and CSU-CFDC detected the onset of ice nucleation under similar conditions of temperature and supersaturation for several different types of ice nuclei. Comparisons of the ratio of ice nuclei to total aerosol concentrations as a function of supersaturation with respect to water (SSw) showed agreement within one order of magnitude. Possible reasons for differences between the two instruments relating to differences in their design are discussed, along with suggestions to future improvements to the current design.


2009 ◽  
Vol 9 (18) ◽  
pp. 6705-6715 ◽  
Author(s):  
A. Welti ◽  
F. Lüönd ◽  
O. Stetzer ◽  
U. Lohmann

Abstract. The recently developed Zurich Ice Nucleation Chamber (ZINC) was used to explore ice nucleation of size-selected mineral dust particles at temperatures between −20°C and −55°C. Four different mineral dust species have been tested: montmorillonite, kaolinite, illite and Arizona test dust (ATD). The selected particle diameters are 100 nm, 200 nm, 400 nm and 800 nm. Relative humidities with respect to ice (RHi) required to activate 1% of the dust particles as ice nuclei (IN) are reported as a function of temperature. An explicit size dependence of the ice formation efficiency has been observed for all dust types. 800 nm particles required the lowest RHi to activate. Deposition nucleation below water saturation was found only below −30°C or −35°C dependent on particle size. Minimum RHi for 1% activation were 105% for illite, kaolinite and montmorillonite at −40°C, respectively 110% for ATD at −45°C. In addition, a possible parameterisation for the measured activation spectra is proposed, which could be used in modeling studies.


2011 ◽  
Vol 11 (6) ◽  
pp. 17665-17698 ◽  
Author(s):  
I. Steinke ◽  
O. Möhler ◽  
A. Kiselev ◽  
M. Niemand ◽  
H. Saathoff ◽  
...  

Abstract. During the eruption of the Eyjafjallajökull volcano in the south of Iceland in April/May 2010, about 40 Tg of ash mass were emitted into the atmosphere. However, it was unclear whether volcanic ash particles with d < 10 μm facilitate the glaciation of clouds. Thus, ice nucleation properties of volcanic ash particles were investigated in AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber experiments simulating atmospherically relevant conditions. The ash sample that was used for our experiments had been collected at a distance of 58 km from the Eyjafjallajökull during the eruption period in April 2010. The temperature range covered by our ice nucleation experiments extended from 219 to 264 K, and both ice nucleation via immersion freezing and deposition nucleation could be observed. Immersion freezing was first observed at 252 K, whereas the deposition nucleation onset lay at 242 K and RHice = 126 %. About 0.1 % of the volcanic ash particles were active as immersion freezing nuclei at a temperature of 249 K. For deposition nucleation, an ice fraction of 0.1 % was observed at around 233 K and RHice = 116 %. Taking ice-active surface site densities as a measure for the ice nucleation efficiency, volcanic ash particles are similarly efficient ice nuclei in immersion freezing mode (ns, imm ~ 109 m−2 at 247 K) compared to certain mineral dusts. For deposition nucleation, the observed ice-active surface site densities ns, dep were found to be 1011 m−2 at 224 K and RHice = 116 %. Thus, volcanic ash particles initiate deposition nucleation more efficiently than Asian and Saharan dust but appear to be poorer ice nuclei than ATD particles. Based on the experimental data, we have derived ice-active surface site densities as a function of temperature for immersion freezing and of relative humidity over ice and temperature for deposition nucleation.


2005 ◽  
Vol 5 (3) ◽  
pp. 3391-3436 ◽  
Author(s):  
C. M. Archuleta ◽  
P. J. DeMott ◽  
S. M. Kreidenweis

Abstract. This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC) operated to expose size-selected aerosol particles to temperatures between −45 and −60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.


2014 ◽  
Vol 14 (11) ◽  
pp. 5529-5546 ◽  
Author(s):  
H. Wex ◽  
P. J. DeMott ◽  
Y. Tobo ◽  
S. Hartmann ◽  
M. Rösch ◽  
...  

Abstract. Kaolinite particles from two different sources (Fluka and Clay Minerals Society (CMS)) were examined with respect to their ability to act as ice nuclei (IN). This was done in the water-subsaturated regime where often deposition ice nucleation is assumed to occur, and for water-supersaturated conditions, i.e., in the immersion freezing mode. Measurements were done using a flow tube (the Leipzig Aerosol Cloud Interaction Simulator, LACIS) and a continuous-flow diffusion chamber (CFDC). Pure and coated particles were used, with coating thicknesses of a few nanometers or less, where the coating consisted of levoglucosan, succinic acid or sulfuric acid. In general, it was found that the coatings strongly reduced deposition ice nucleation. Remaining ice formation in the water-subsaturated regime could be attributed to immersion freezing, with particles immersed in concentrated solutions formed by the coatings. In the immersion freezing mode, ice nucleation rate coefficients jhet from both instruments agreed well with each other, particularly when the residence times in the instruments were accounted for. Fluka kaolinite particles coated with either levoglucosan or succinic acid showed the same IN activity as pure Fluka kaolinite particles; i.e., it can be assumed that these two types of coating did not alter the ice-active surface chemically, and that the coatings were diluted enough in the droplets that were formed prior to the ice nucleation, so that freezing point depression was negligible. However, Fluka kaolinite particles, which were either coated with pure sulfuric acid or were first coated with the acid and then exposed to additional water vapor, both showed a reduced ability to nucleate ice compared to the pure particles. For the CMS kaolinite particles, the ability to nucleate ice in the immersion freezing mode was similar for all examined particles, i.e., for the pure ones and the ones with the different types of coating. Moreover, jhet derived for the CMS kaolinite particles was comparable to jhet derived for Fluka kaolinite particles coated with sulfuric acid. This is suggestive for the Fluka kaolinite possessing a type of ice-nucleating surface feature which is not present on the CMS kaolinite, and which can be destroyed by reaction with sulfuric acid. This might be potassium feldspar.


2007 ◽  
Vol 7 (14) ◽  
pp. 3923-3931 ◽  
Author(s):  
A. Salam ◽  
U. Lohmann ◽  
G. Lesins

Abstract. The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100%) and diluted ammonia gas (25 ppm) at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw) and 5 to 8 times at 100% RHw for 120 min exposure time compared to unexposed montmorillonite within our experimental conditions. The percentages of active ice nuclei were 2 to 8 times higher at 90% RHw and 2 to 7 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 15°C higher than for unexposed montmorillonite particles at 90% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 10°C warmer than unexposed montmorillonite at 90% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles suggesting that the ammonia is chemically bound to the montmorillonite particle. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.


2005 ◽  
Vol 5 (10) ◽  
pp. 2617-2634 ◽  
Author(s):  
C. M. Archuleta ◽  
P. J. DeMott ◽  
S. M. Kreidenweis

Abstract. This study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC) operated to expose size-selected aerosol particles to temperatures between -45 and -60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings.


2011 ◽  
Vol 11 (24) ◽  
pp. 12945-12958 ◽  
Author(s):  
I. Steinke ◽  
O. Möhler ◽  
A. Kiselev ◽  
M. Niemand ◽  
H. Saathoff ◽  
...  

Abstract. During the eruption of the Eyjafjallajökull volcano in the south of Iceland in April/May 2010, about 40 Tg of ash mass were emitted into the atmosphere. It was unclear whether volcanic ash particles with d < 10 μm facilitate the glaciation of clouds. Thus, ice nucleation properties of volcanic ash particles were investigated in AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber experiments simulating atmospherically relevant conditions. The ash sample that was used for our experiments had been collected at a distance of 58 km from the Eyjafjallajökull during the eruption period in April 2010. The temperature range covered by our ice nucleation experiments extended from 219 to 264 K, and both ice nucleation via immersion freezing and deposition nucleation could be observed. Immersion freezing was first observed at 252 K, whereas the deposition nucleation onset lay at 242 K and RHice =126%. About 0.1% of the volcanic ash particles were active as immersion freezing nuclei at a temperature of 249 K. For deposition nucleation, an ice fraction of 0.1% was observed at around 233 K and RHice =116%. Taking ice-active surface site densities as a measure for the ice nucleation efficiency, volcanic ash particles are similarly efficient ice nuclei in immersion freezing mode (ns,imm ~ 109 m−2 at 247 K) compared to certain mineral dusts. For deposition nucleation, the observed ice-active surface site densities ns,dep were found to be 1011 m−2 at 224 K and RHice =116%. Thus, volcanic ash particles initiate deposition nucleation more efficiently than Asian and Saharan dust but appear to be poorer ice nuclei than ATD particles. Based on the experimental data, we have derived ice-active surface site densities as a function of temperature for immersion freezing and of relative humidity over ice and temperature for deposition nucleation.


Sign in / Sign up

Export Citation Format

Share Document