scholarly journals A novel calibration approach of MODIS AOD data to predict PM<sub>2.5</sub> concentrations

2011 ◽  
Vol 11 (15) ◽  
pp. 7991-8002 ◽  
Author(s):  
H. J. Lee ◽  
Y. Liu ◽  
B. A. Coull ◽  
J. Schwartz ◽  
P. Koutrakis

Abstract. Epidemiological studies investigating the human health effects of PM2.5 are susceptible to exposure measurement errors, a form of bias in exposure estimates, since they rely on data from a limited number of PM2.5 monitors within their study area. Satellite data can be used to expand spatial coverage, potentially enhancing our ability to estimate location- or subject-specific exposures to PM2.5, but some have reported poor predictive power. A new methodology was developed to calibrate aerosol optical depth (AOD) data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). Subsequently, this method was used to predict ground daily PM2.5 concentrations in the New England region. 2003 MODIS AOD data corresponding to the New England region were retrieved, and PM2.5 concentrations measured at 26 US Environmental Protection Agency (EPA) PM2.5 monitoring sites were used to calibrate the AOD data. A mixed effects model which allows day-to-day variability in daily PM2.5-AOD relationships was used to predict location-specific PM2.5 levels. PM2.5 concentrations measured at the monitoring sites were compared to those predicted for the corresponding grid cells. Both cross-sectional and longitudinal comparisons between the observed and predicted concentrations suggested that the proposed new calibration approach renders MODIS AOD data a potentially useful predictor of PM2.5 concentrations. Furthermore, the estimated PM2.5 levels within the study domain were examined in relation to air pollution sources. Our approach made it possible to investigate the spatial patterns of PM2.5 concentrations within the study domain.

2011 ◽  
Vol 11 (3) ◽  
pp. 9769-9795 ◽  
Author(s):  
H. J. Lee ◽  
Y. Liu ◽  
B. A. Coull ◽  
J. Schwartz ◽  
P. Koutrakis

Abstract. Epidemiological studies investigating the human health effects of PM2.5 are susceptible to exposure measurement errors, a form of bias in exposure estimates, since they rely on data from a limited number of PM2.5 monitors within their study area. Satellite data can be used to expand spatial coverage, potentially enhancing our ability to estimate location- or subject-specific exposures to PM2.5, but some have reported poor predictive power. A new methodology was developed to calibrate aerosol optical depth (AOD) data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). Subsequently, this method was used to predict ground daily PM2.5 concentrations in the New England region. 2003 MODIS AOD data corresponding to the New England region were retrieved, and PM2.5 concentrations measured at 26 US Environmental Protection Agency (EPA) PM2.5 monitoring sites were used to calibrate the AOD data. A mixed effects model which allows day-to-day variability in daily PM2.5-AOD relationships was used to predict location-specific PM2.5 levels. PM2.5 concentrations measured at the monitoring sites were compared to those predicted for the corresponding grid cells. Both cross-sectional and longitudinal comparisons between the observed and predicted concentrations suggested that the proposed new calibration approach renders MODIS AOD data a potentially useful predictor of PM2.5 concentrations. Furthermore, the estimated PM2.5 levels within the study domain were examined in relation to air pollution sources. Our approach made it possible to investigate the spatial patterns of PM2.5 concentrations within the study domain.


2022 ◽  
Author(s):  
Wilawan Kumharn ◽  
Oradee Pilahome ◽  
Wichaya Ninsawan ◽  
Yuttapichai Jankondee

Abstract Particulate matter (PM2.5) pollutants are a significant health issue with impacts on human health; however, monitoring of PM2.5 is very limited in developing countries. Satellite remote sensing can expand spatial coverage, potentially enhancing our ability in a specific area for estimating PM2.5; however, some have reported poor predictive performance. An innovative combination of MODIS AOD was developed to fulfill all missing aerosol optical depth (AOD) data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). Therefore, hourly PM2.5 concentrations were obtained in Northeastern Thailand. A Linear mixed-effects (LME) model was used to predict location-specific hourly PM2.5 levels. Hourly PM2.5 concentrations measured at 20 PM2.5 monitoring sites and 10- fold cross-validation were addressed for model validation. The observed and predicted concentrations suggested that LME obtained from MODIS AOD data and other factors are a potentially useful predictor of hourly PM2.5 concentrations (R2 >0.70), providing more detailed spatial information for local scales studies. Interestingly, PM2.5 along the Mekong River area was observed higher than in the plain area. The finding can infer that the monsoon wind brings polluted air into the province from sources outside the region. The results will be helpful to analyze air pollution-related health studies.


2018 ◽  
Vol 10 (12) ◽  
pp. 2021 ◽  
Author(s):  
Xinpeng Tian ◽  
Qiang Liu ◽  
Xiuhong Li ◽  
Jing Wei

The operational Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Products (APs) have provided long-term and wide-spatial-coverage aerosol optical properties across the globe, such as aerosol optical depth (AOD). However, the performance of the latest Collection 6.1 (C6.1) of MODIS APs is still unclear over urban areas that feature complex surface characteristics and aerosol models. The aim of this study was to validate and compare the performance of the MODIS C6.1 and C6 APs (MxD04, x = O for Terra, x = Y for Aqua) over Beijing, China. The results of the Dark Target (DT) and Deep Blue (DB) algorithms were validated against Aerosol Robotic Network (AERONET) ground-based observations at local sites. The retrieval uncertainties and accuracies were evaluated using the expected error (EE: ±0.05 + 15%) and the root-mean-square error (RMSE). It was found that the MODIS C6.1 DT products performed better than the C6 DT products, with a greater percentage (by about 13%–14%) of the retrievals falling within the EE. However, the DT retrievals collected from two collections were significantly overestimated in the Beijing region, with more than 64% and 48% of the samples falling above the EE for the Terra and Aqua satellites, respectively. The MODIS C6.1 DB products performed similarly to the C6 DB products, with 70%–73% of the retrievals matching within the EE and estimation uncertainties. Moreover, the DB algorithm performed much better than DT algorithm over urban areas, especially in winter where abundant missing pixels were found in DT products. To investigate the effects of factors on AOD retrievals, the variability in the assumed surface reflectance and the main optical properties applied in DT and DB algorithms are also analyzed.


2020 ◽  
Vol 13 (3) ◽  
pp. 1387-1412
Author(s):  
Jonas Witthuhn ◽  
Anja Hünerbein ◽  
Hartwig Deneke

Abstract. Reliable reference measurements over the ocean are essential for the evaluation and improvement of satellite- and model-based aerosol datasets. Within the framework of the Maritime Aerosol Network, shipborne reference datasets have been collected over the Atlantic Ocean since 2004 with Microtops Sun photometers. These were recently complemented by measurements with the multi-spectral GUVis-3511 shadowband radiometer during five cruises with the research vessel Polarstern. The aerosol optical depth (AOD) uncertainty estimate of both shipborne instruments of ±0.02 can be confirmed if the GUVis instrument is cross calibrated to the Microtops instrument to account for differences in calibration, and if an empirical correction to account for the broad shadowband as well as the effects of forward scattering is introduced. Based on these two datasets, a comprehensive evaluation of aerosol products from the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on NASA's Earth Observing System satellites, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard the geostationary Meteosat satellite, and the Copernicus Atmosphere Monitoring Service reanalysis (CAMS RA) is presented. For this purpose, focus is given to the accuracy of the AOD at 630 nm in combination with the Ångström exponent (AE), discussed in the context of the ambient aerosol type. In general, the evaluation of MODIS AOD from the official level-2 aerosol products of C6.1 against the Microtops AOD product confirms that 76 % of data points fall into the expected error limits given by previous validation studies. The SEVIRI-based AOD product exhibits a 25 % larger scatter than the MODIS AOD products at the instrument's native spectral channels. Further, the comparison of CAMS RA and MODIS AOD versus the shipborne reference shows similar performance for both datasets, with some differences arising from the assimilation and model assumptions. When considering aerosol conditions, an overestimation of AE is found for scenes dominated by desert dust for MODIS and SEVIRI products versus the shipborne reference dataset. As the composition of the mixture of aerosol in satellite products is constrained by model assumptions, this highlights the importance of considering the aerosol type in evaluation studies for identifying problematic aspects.


2018 ◽  
Vol 18 (15) ◽  
pp. 11389-11407 ◽  
Author(s):  
Larisa Sogacheva ◽  
Gerrit de Leeuw ◽  
Edith Rodriguez ◽  
Pekka Kolmonen ◽  
Aristeidis K. Georgoulias ◽  
...  

Abstract. Aerosol optical depth (AOD) patterns and interannual and seasonal variations over China are discussed based on the AOD retrieved from the Along-Track Scanning Radiometer (ATSR-2, 1995–2002), the Advanced ATSR (AATSR, 2002–2012) (together ATSR) and the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite (2000–2017). The AOD products used were the ATSR Dual View (ADV) v2.31 AOD and the MODIS/Terra Collection 6.1 (C6.1) merged dark target (DT) and deep blue (DB) AOD product. Together these datasets provide an AOD time series for 23 years, from 1995 to 2017. The difference between the AOD values retrieved from ATSR-2 and AATSR is small, as shown by pixel-by-pixel and monthly aggregate comparisons as well as validation results. This allows for the combination of the ATSR-2 and AATSR AOD time series into one dataset without offset correction. ADV and MODIS AOD validation results show similar high correlations with the Aerosol Robotic Network (AERONET) AOD (0.88 and 0.92, respectively), while the corresponding bias is positive for MODIS (0.06) and negative for ADV (−0.07). Validation of the AOD products in similar conditions, when ATSR and MODIS/Terra overpasses are within 90 min of each other and when both ADV and MODIS retrieve AOD around AERONET locations, show that ADV performs better than MODIS in autumn, while MODIS performs slightly better in spring and summer. In winter, both ADV and MODIS underestimate the AERONET AOD. Similar AOD patterns are observed by ADV and MODIS in annual and seasonal aggregates as well as in time series. ADV–MODIS difference maps show that MODIS AOD is generally higher than that from ADV. Both ADV and MODIS show similar seasonal AOD behavior. The AOD maxima shift from spring in the south to summer along the eastern coast further north. The agreement between sensors regarding year-to-year AOD changes is quite good. During the period from 1995 to 2006 AOD increased in the southeast (SE) of China. Between 2006 and 2011 AOD did not change much, showing minor minima in 2008–2009. From 2011 onward AOD decreased in the SE of China. Similar patterns exist in year-to-year ADV and MODIS annual AOD tendencies in the overlapping period. However, regional differences between the ATSR and MODIS AODs are quite large. The consistency between ATSR and MODIS with regards to the AOD tendencies in the overlapping period is rather strong in summer, autumn and overall for the yearly average; however, in winter and spring, when there is a difference in coverage between the two instruments, the agreement between ATSR and MODIS is lower. AOD tendencies in China during the 1995–2017 period will be discussed in more detail in Part 2 (a following paper: Sogacheva et al., 2018), where a method to combine AOD time series from ADV and MODIS is introduced, and combined AOD time series are analyzed.


2016 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen ◽  
R. E. Holz ◽  
J. Lee ◽  
...  

Abstract. The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) when similar algorithms are applied to the different sensors. This study presents a vicarious calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to VIIRS between approximately +2 % and −7 % (dependent on band) are needed to bring the two into alignment, and indications of relative trending of up to ~ 0.45 % per year in some bands. The derived vicarious gains are also applied in an AOD retrieval, and are shown to decrease the bias and total error in AOD across the midvisible spectral region compared to the standard VIIRS NASA calibration. The resulting bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multisensor data continuity.


2016 ◽  
Vol 9 (11) ◽  
pp. 4257-4272
Author(s):  
Antigoni Panagiotopoulou ◽  
Panagiotis Charalampidis ◽  
Christos Fountoukis ◽  
Christodoulos Pilinis ◽  
Spyros N. Pandis

Abstract. The ability of chemical transport model (CTM) PMCAMx to reproduce aerosol optical depth (AOD) measurements by the Aerosol Robotic Network (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) over Europe during the photochemically active period of May 2008 (EUCAARI campaign) is evaluated. Periods with high dust or sea-salt levels are excluded, so the analysis focuses on the ability of the model to simulate the mostly secondary aerosol and its interactions with water. PMCAMx reproduces the monthly mean MODIS and AERONET AOD values over the Iberian Peninsula, the British Isles, central Europe, and Russia with a fractional bias of less than 15 % and a fractional error of less than 30 %. However, the model overestimates the AOD over northern Europe, most probably due to an overestimation of organic aerosol and sulfates. At the other end, PMCAMx underestimates the monthly mean MODIS AOD over the Balkans, the Mediterranean, and the South Atlantic. These errors appear to be related to an underestimation of sulfates. Sensitivity tests indicate that the evaluation results of the monthly mean AODs are quite sensitive to the relative humidity (RH) fields used by PMCAMx, but are not sensitive to the simulated size distribution and the black carbon mixing state. The screening of the satellite retrievals for periods with high dust (or coarse particles in general) concentrations as well as the combination of the MODIS and AERONET datasets lead to more robust conclusions about the ability of the model to simulate the secondary aerosol components that dominate the AOD during this period.


2019 ◽  
Author(s):  
Jonas Witthuhn ◽  
Anja Hünerbein ◽  
Hartwig Deneke

Abstract. Reliable reference measurements over ocean are essential for the evaluation and improvement of satellite- and model-based aerosol datasets. Within the framework of the Maritime Aerosol Network, shipborne reference datasets have been collected over the Atlantic ocean since 2004 with Microtops sun photometers. These were recently complemented by measurements with the multi-spectral shadowband radiometer GUVis-3511 during five cruises with the research vessel Polarstern. The AOD uncertainty estimate of both ship-borne instruments of ±0.02 can be confirmed, if the GUVis instrument is cross-calibrated to the Microtops instrument to account for differences in calibration, and an empirical correction to account for the broad shadowband and the effects of forward-scattering is introduced. Based on these two datasets, a comprehensive evaluation of aerosol products from the Moderate resolution Imaging Spectroradiometer (MODIS) flown on NASA's Earth Observing System satellites, the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the geostationary Meteosat satellite, and the Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA) is presented. For this purpose, focus is given to the accuracy of the aerosol optical depth (AOD) at 630 nm in combination with the Angström exponent (AE), discussed in the context of the ambient aerosol type. In general, the evaluation of MODIS AOD from the official Level-2 aerosol products of C6.1 against the Microtops AOD product confirms that 76 % of datapoints fall into the expected error limits given by previous validation studies. The SEVIRI-based AOD product exhibits a 25 % larger scatter than the MODIS AOD products at the instrument's native spectral channels. Further, the comparison of CAMSRA and MODIS AOD versus the shipborne reference show similar performances of both datasets, with some differences arising from the assimilation and model assumptions. When considering aerosol conditions, an overestimation of AE is found for scenes dominated by desert dust for MODIS and SEVIRI products versus the shipborne reference dataset. This highlights the importance of considering aerosol type in evaluation studies for identifying problematic aspects.


2013 ◽  
Vol 6 (11) ◽  
pp. 2989-3034 ◽  
Author(s):  
R. C. Levy ◽  
S. Mattoo ◽  
L. A. Munchak ◽  
L. A. Remer ◽  
A. M. Sayer ◽  
...  

Abstract. The twin Moderate resolution Imaging Spectroradiometer (MODIS) sensors have been flying on Terra since 2000 and Aqua since 2002, creating an extensive data set of global Earth observations. Here, we introduce the Collection 6 (C6) algorithm to retrieve aerosol optical depth (AOD) and aerosol size parameters from MODIS-observed spectral reflectance. While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. The C6 aerosol data set will be created from three separate retrieval algorithms that operate over different surface types. These are the two "Dark Target" (DT) algorithms for retrieving (1) over ocean (dark in visible and longer wavelengths) and (2) over vegetated/dark-soiled land (dark in the visible), plus the "Deep Blue" (DB) algorithm developed originally for retrieving (3) over desert/arid land (bright in the visible). Here, we focus on DT-ocean and DT-land (#1 and #2). We have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to ≤ 84°) to increase poleward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season/location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence on the surface reflectance, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. At the same time, we quantified how "upstream" changes to instrument calibration, land/sea masking and cloud masking will also impact the statistics of global AOD, and affect Terra and Aqua differently. For Aqua, all changes will result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.02) over land, along with changes in spatial coverage. We compared preliminary data to surface-based sun photometer data, and show that C6 should improve upon C5. C6 will include a merged DT/DB product over semi-arid land surfaces for reduced-gap coverage and better visualization, and new information about clouds in the aerosol field. Responding to the needs of the air quality community, in addition to the standard 10 km product, C6 will include a global (DT-land and DT-ocean) aerosol product at 3 km resolution.


2009 ◽  
Vol 27 (9) ◽  
pp. 3509-3522 ◽  
Author(s):  
A. Gkikas ◽  
N. Hatzianastassiou ◽  
N. Mihalopoulos

Abstract. Aerosol events (their frequency and intensity) in the broader Mediterranean basin were studied using 7-year (2000–2007) aerosol data of optical depth (AOD at 550 nm) from the MODerate Resolution Imaging Spectroradiometer (MODIS) Terra. The complete spatial coverage of data revealed a significant spatial variability of aerosol events which is also dependent on their intensity. Strong events occur more often in the western and central Mediterranean basin (up to 14 events/year) whereas extreme events (AOD up to 5.0) are systematically observed in the eastern Mediterranean basin throughout the year. There is also a significant seasonal variability with strong aerosol events occurring most frequently in the western part of the basin in summer and extreme episodes in the eastern part during spring. The events were also analyzed separately over land and sea revealing differences that are due to the different natural and anthropogenic processes, like dust transport (producing maximum frequencies of extreme episodes in spring over both land and sea) or forest fires (producing maximum frequencies in strong episodes in summer over land). The inter-annual variability shows a gradual decrease in the frequency of all aerosol episodes over land and sea areas of the Mediterranean during the period 2000–2007, associated with an increase in their intensity (increased AOD values). The strong spatiotemporal variability of aerosol events indicates the need for monitoring them at the highest spatial and temporal coverage and resolution.


Sign in / Sign up

Export Citation Format

Share Document