scholarly journals A review of operational, regional-scale, chemical weather forecasting models in Europe

2012 ◽  
Vol 12 (1) ◽  
pp. 1-87 ◽  
Author(s):  
J. Kukkonen ◽  
T. Olsson ◽  
D. M. Schultz ◽  
A. Baklanov ◽  
T. Klein ◽  
...  

Abstract. Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affects the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.

2011 ◽  
Vol 11 (2) ◽  
pp. 5985-6162 ◽  
Author(s):  
J. Kukkonen ◽  
T. Balk ◽  
D. M. Schultz ◽  
A. Baklanov ◽  
T. Klein ◽  
...  

Abstract. Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affect the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.


Author(s):  
Di Xian ◽  
Peng Zhang ◽  
Ling Gao ◽  
Ruijing Sun ◽  
Haizhen Zhang ◽  
...  

AbstractFollowing the progress of satellite data assimilation in the 1990s, the combination of meteorological satellites and numerical models has changed the way scientists understand the earth. With the evolution of numerical weather prediction models and earth system models, meteorological satellites will play a more important role in earth sciences in the future. As part of the space-based infrastructure, the Fengyun (FY) meteorological satellites have contributed to earth science sustainability studies through an open data policy and stable data quality since the first launch of the FY-1A satellite in 1988. The capability of earth system monitoring was greatly enhanced after the second-generation polar orbiting FY-3 satellites and geostationary orbiting FY-4 satellites were developed. Meanwhile, the quality of the products generated from the FY-3 and FY-4 satellites is comparable to the well-known MODIS products. FY satellite data has been utilized broadly in weather forecasting, climate and climate change investigations, environmental disaster monitoring, etc. This article reviews the instruments mounted on the FY satellites. Sensor-dependent level 1 products (radiance data) and inversion algorithm-dependent level 2 products (geophysical parameters) are introduced. As an example, some typical geophysical parameters, such as wildfires, lightning, vegetation indices, aerosol products, soil moisture, and precipitation estimation have been demonstrated and validated by in-situ observations and other well-known satellite products. To help users access the FY products, a set of data sharing systems has been developed and operated. The newly developed data sharing system based on cloud technology has been illustrated to improve the efficiency of data delivery.


1959 ◽  
Vol 40 (10) ◽  
pp. 493-498 ◽  
Author(s):  
Christian E. Junge

The field of atmospheric chemistry, which is defined as the chemistry of trace substances in the troposphere, is reviewed. Trace substances can be present as aerosols or as gases. Major sources of aerosols are the ocean and industrial activities. The chemical composition of the aerosol particles is not only determined by their source but also by various processes in the atmosphere—notably, reactions with gas traces. Only little is known about trace gases like SO2, H2S, NH3 or NO2. Of special importance for meteorology is CO2 and its long-term fluctuations. The facts and possible reasons for its 10 per cent increase during this century are discussed. The last part of the discussion is concerned with the physical processes by which the trace substances are removed from the atmosphere, primarily the role of precipitation.


2016 ◽  
Vol 20 (4) ◽  
pp. 48-58
Author(s):  
Andrzej Mazur ◽  
Grzegorz Duniec

Abstract Physical processes in soil-plant-water system are very complicated. Complex physical processes in soil, in particular interaction between soil-plant-water system have significant influence on processes in Planetary Boundary Layer. Changes of soil state can significantly modify processes in the PBL and meteorological fields. Since numerical models are to determine the forecast of high quality, the physical processes occurring in soil should be properly described and then appropriately introduced into a model. Every process in soil occurs on a smaller scale than original model’s domain, so it should be described via adequate parameterization. Overall, soil parameterizations implemented in current numerical weather prediction (NWP) model(s) were prepared almost 40 years ago, when NWP models worked with very poor resolution mesh. Since nowadays NWP works over domains of high resolution, these “old” schemes parameterization must be adequately revised. In this paper preliminary results of changes of parameterization of soil processes will be presented.


2013 ◽  
Vol 94 (11) ◽  
pp. 1675-1690 ◽  
Author(s):  
C. R. Wood ◽  
L. Järvi ◽  
R. D. Kouznetsov ◽  
A. Nordbo ◽  
S. Joffre ◽  
...  

The Helsinki Urban Boundary-Layer Atmosphere Network (UrBAN: http://urban.fmi.fi) is a dedicated research-grade observational network where the physical processes in the atmosphere above the city are studied. Helsinki UrBAN is the most poleward intensive urban research observation network in the world and thus will allow studying some unique features such as strong seasonality. The network's key purpose is for the understanding of the physical processes in the urban boundary layer and associated fluxes of heat, momentum, moisture, and other gases. A further purpose is to secure a research-grade database, which can be used internationally to validate and develop numerical models of air quality and weather prediction. Scintillometers, a scanning Doppler lidar, ceilometers, a sodar, eddy-covariance stations, and radiometers are used. This equipment is supplemented by auxiliary measurements, which were primarily set up for general weather and/or air-quality mandatory purposes, such as vertical soundings and the operational Doppler radar network. Examples are presented as a testimony to the potential of the network for urban studies, such as (i) evidence of a stable boundary layer possibly coupled to an urban surface, (ii) the comparison of scintillometer data with sonic anemometry above an urban surface, (iii) the application of scanning lidar over a city, and (iv) combination of sodar and lidar to give a fuller range of sampling heights for boundary layer profiling.


Author(s):  
Lars van Galen ◽  
Oscar Hartogensis ◽  
Imme Benedict ◽  
Gert-Jan Steeneveld

AbstractWe report on renewing the undergraduate course about synoptic meteorology and weather forecasting at Wageningen University (The Netherlands) to meet the current-day requirements of operational forecasters. Weather strongly affects human activities through its impact on transportation, energy demand planning and personal safety, especially in the case of weather extremes. Numerical weather prediction models (NWP) have developed rapidly in recent decades, with reasonably high scores, even on the regional scale. The amount of available NWP model output has sharply increased. Hence, the role and value of the operational weather forecaster has evolved into the role of information selector, data quality manager, storyteller, and product developer for specific customers. To support this evolution, we need new academic training methods and tools at the bachelor’s level. Here, we present a renewed education strategy for our weather forecasting class, called Atmospheric Practical, including redefined learning outcomes, student activities, and assessments. In addition to teaching the interpretation of weather maps, we underline the need for 21st century skills like dealing with open data, data handling, and data analysis. These skills are taught using Jupyter Python notebooks as the leading analysis tool. Moreover, we introduce assignments about communication skills and forecast product development as we aim to benefit from the internationalization of the classroom. Finally, we share the teaching material presented in this paper for the benefit of the community.


2013 ◽  
Vol 10 (11) ◽  
pp. 18563-18611
Author(s):  
S. Smolander ◽  
Q. He ◽  
D. Mogensen ◽  
L. Zhou ◽  
J. Bäck ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain. We applied the boundary layer-chemistry-transport model SOSA to investigate Scots pine (Pinus sylvestris) monoterpene emissions in a boreal coniferous forest at the SMEAR II site, Southern Finland. SOSA was applied to simulate monoterpene emissions with three different emission modules: the semi-empirical G95, MEGAN 2.04 with improved descriptions of temperature and light responses and including also carbonyl emissions, and a process-based model SIM-BIM. For the first time, the emission models included seasonal and diurnal variations in both quantity and chemical species of emitted monoterpenes, based on parameterizations obtained from field measurements. Results indicate that modelling and observations agreed reasonably well, and that the model can be used for investigating regional air chemistry questions related to monoterpenes. The predominant modelled monoterpene concentrations, α-pinene and Δ3-carene, are consistent with observations.


2014 ◽  
Vol 11 (19) ◽  
pp. 5425-5443 ◽  
Author(s):  
S. Smolander ◽  
Q. He ◽  
D. Mogensen ◽  
L. Zhou ◽  
J. Bäck ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors, such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain. We applied the boundary-layer–chemistry-transport model SOSA (model to Simulate the concentrations of Organic vapours and Sulphuric Acid) to investigate Scots pine (Pinus sylvestris) monoterpene emissions in a boreal coniferous forest at the SMEAR (Station for Measuring forest Ecosystem–Atmosphere Relations) II site, southern Finland. SOSA was applied to simulate monoterpene emissions with three different emission modules: the semiempirical G95, MEGAN (Model of Emissions of Gases and Aerosols from Nature) 2.04 with improved descriptions of temperature and light responses and including also carbonyl emissions, and a process-based model SIM–BIM (Seasonal Isoprenoid synthase Model – Biochemical Isoprenoid biosynthesis Model). For the first time, the emission models included seasonal and diurnal variations in both quantity and chemical species of emitted monoterpenes, based on parameterizations obtained from field measurements. Results indicate that modelling and observations agreed reasonably well and that the model can be used for investigating regional air chemistry questions related to monoterpenes. The predominant modelled monoterpene concentrations, α-pinene and Δ3-carene, are consistent with observations.


Author(s):  
R. Giles Harrison ◽  
Edward Hanna

A solar eclipse provides a well-characterized reduction in solar radiation, of calculable amount and duration. This captivating natural astronomical phenomenon is ideally suited to science outreach activities, but the predictability of the change in solar radiation also provides unusual conditions for assessing the atmospheric response to a known stimulus. Modern automatic observing networks used for weather forecasting and atmospheric research have dense spatial coverage, so the quantitative meteorological responses to an eclipse can now be evaluated with excellent space and time resolution. Numerical models representing the atmosphere at high spatial resolution can also be used to predict eclipse-related changes and interpret the observations. Combining the models with measurements yields the elements of a controlled atmospheric experiment on a regional scale (10–1000 km), which is almost impossible to achieve by other means. This modern approach to ‘eclipse meteorology’ as identified here can ultimately improve weather prediction models and be used to plan for transient reductions in renewable electricity generation. During the 20 March 2015 eclipse, UK electrical energy demand increased by about 3 GWh (11 TJ) or about 4%, alongside reductions in the wind and photovoltaic electrical energy generation of 1.5 GWh (5.5 TJ). This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.


2014 ◽  
Vol 7 (3) ◽  
pp. 2933-2959 ◽  
Author(s):  
J. R. Rozante ◽  
D. S. Moreira ◽  
R. C. M. Godoy ◽  
A. A. Fernandes

Abstract. In this study, a method of numerical weather prediction by ensemble for the South American region is proposed. This method takes into account combinations of the numerical predictions of various models, assigning greater weight to models that exhibit the best performance. Nine operational numerical models were used to perform this study. The main objective of the study is to obtain a weather forecasting product (short-to-medium range) that combines what is best in each of the nine models used in the study, thus producing more reliable predictions. The proposed method was evaluated during austral summer (December 2012, and January and February 2013) and winter (June, July and August 2013). The results show that the proposed method can significantly improve the results provided by the numerical models, and consequently has promising potential for operational applications in any weather forecasting center.


Sign in / Sign up

Export Citation Format

Share Document