scholarly journals Automated ground-based remote sensing measurements of greenhouse gases at the Białystok site in comparison with collocated in situ measurements and model data

2012 ◽  
Vol 12 (15) ◽  
pp. 6741-6755 ◽  
Author(s):  
J. Messerschmidt ◽  
H. Chen ◽  
N. M. Deutscher ◽  
C. Gerbig ◽  
P. Grupe ◽  
...  

Abstract. The in situ boundary layer measurement site in Białystok (Poland) has been upgraded with a fully automated observatory for total greenhouse gas column measurements. The automated Fourier Transform Spectrometer (FTS) complements the on-site in situ facilities and FTS solar absorption measurements have been recorded nearly continuously in clear and partially cloudy conditions since March 2009. Here, the FTS measurements are compared with the collocated tall tower data. Additionally, simulations of the Jena CO2 inversion model are evaluated with the Białystok measurement facilities. The simulated seasonal CO2 cycle is slightly overestimated by a mean difference of 1.2 ppm ± 0.9 ppm (1σ) in comparison with the FTS measurements. CO2 concentrations at the surface, measured at the tall tower (5 m, 90 m, 300 m), are slightly underestimated by −1.5 ppm, −1.6 ppm, and −0.7 ppm respectively during the day and by −9.1 ppm, −5.9 ppm, and −1.3 ppm during the night. The comparison of the simulated CO2 profiles with low aircraft profiles shows a slight overestimation of the lower troposphere (by up to 1 ppm) and an underestimation in near-surface heights until 800 m (by up to 2.5 ppm). In an appendix the automated FTS observatory, including the hardware components and the automation software, is described in its basics.

2011 ◽  
Vol 11 (12) ◽  
pp. 32245-32282 ◽  
Author(s):  
J. Messerschmidt ◽  
H. Chen ◽  
N. M. Deutscher ◽  
C. Gerbig ◽  
P. Grupe ◽  
...  

Abstract. The fully automated observatory for total greenhouse gas (GHG) column measurements introduced here complements the in-situ facilities at the Białystok site in Poland. With the automated Fourier Transform Spectrometer (FTS), solar absorption measurements have been recorded nearly continuously since March 2009. In this article the automation system, including the hardware components and the automation software will be described in its basics. Furthermore the first comparison of the FTS dataset with the collocated in-situ measurements and the first comparison of the Jena CO2 inversion model are presented. This model identifies monthly variations in the total CO2 column and the seasonal amplitude is in good agreement with the FTS measurements.


2017 ◽  
Vol 10 (7) ◽  
pp. 2703-2725 ◽  
Author(s):  
Eddy F. Plaza-Medina ◽  
Wolfgang Stremme ◽  
Alejandro Bezanilla ◽  
Michel Grutter ◽  
Matthias Schneider ◽  
...  

Abstract. We present atmospheric ozone (O3) profiles measured over central Mexico between November 2012 and February 2014 from two different ground-based FTIR (Fourier transform infrared) solar absorption experiments. The first instrument offers very high-resolution spectra and contributes to NDACC (Network for the Detection of Atmospheric Composition Change). It is located at a mountain observatory about 1700 m above the Mexico City basin. The second instrument has a medium spectral resolution and is located inside Mexico City at a horizontal distance of about 60 km from the mountain observatory. It is documented that the retrieval with the high- and medium-resolution experiments provides O3 variations for four and three independent atmospheric altitude ranges, respectively, and the theoretically estimated errors of these profile data are mostly within 10 %. The good quality of the data is empirically demonstrated above the tropopause by intercomparing the two FTIR O3 data, and for the boundary layer by comparing the Mexico City FTIR O3 data with in situ O3 surface data. Furthermore, we develop a combined boundary layer O3 remote sensing product that uses the retrieval results of both FTIR experiments, and we use theoretical and empirical evaluations to document the improvements that can be achieved by such a combination.


2017 ◽  
Author(s):  
Eddy F. Plaza-Medina ◽  
Wolfgang Stremme ◽  
Alejandro Bezanilla ◽  
Michel Grutter ◽  
Matthias Schneider ◽  
...  

Abstract. We present atmospheric ozone (O3) profiles measured over central Mexico between November 2012 and February 2014 by two different ground-based FTIR (Fourier transform infrared) solar absorption experiments. The first instrument offers very high resolution spectra and contributes to NDACC (Network for the Detection of Atmospheric Composition Change). It is located at a mountain observatory about 1700 m above the Mexico City basin. The second instrument has a medium spectral resolution and is located inside of Mexico City at a horizontal distance of about 60 km to the mountain observatory. It is documented that the retrieval with the high and medium resolution experiments give O3 variations for three and four independent atmospheric altitude ranges, respectively, whereby the theoretically estimated errors of these profile data are mostly within 10 %. The good quality of the data is empirically demonstrated: above the tropopause by intercomparing the two FTIR O3 data and for the boundary layer by comparing the Mexico City FTIR O3 data with in-situ O3 surface data. Furthermore, we develop a combined boundary layer O3 remote sensing product that uses the retrieval results of both FTIR experiments and demonstrate theoretically and empirically the improvements achieved by such combination.


2018 ◽  
Vol 40 ◽  
pp. 63 ◽  
Author(s):  
Rayonil Gomes Carneiro ◽  
Alice Henkes ◽  
Gilberto Fisch ◽  
Camilla Kassar Borges

In the present study, the evolution the diurnal cycle of planetary boundary layer in the wet season at Amazon region during a period of intense observations carried out in the GOAmazon Project 2014/2015 (Green Ocean Amazon).The analysis includes radiosonde and remote sensing data. In general case, the results of the daily cycle in the wet season indicate a Nocturnal boundary layer with a small oscillation in its depth and with a tardy erosion. The convective boundary layer did not present great depth, responding to the low values of sensible heat of the wet season. A comparison between the different techniques(in situ observations and remote sensing)  for estimating the planetary boundary layer is also presented.


2019 ◽  
Vol 100 (1) ◽  
pp. 137-153 ◽  
Author(s):  
Timothy J. Wagner ◽  
Petra M. Klein ◽  
David D. Turner

AbstractMobile systems equipped with remote sensing instruments capable of simultaneous profiling of temperature, moisture, and wind at high temporal resolutions can offer insights into atmospheric phenomena that the operational network cannot. Two recently developed systems, the Space Science and Engineering Center (SSEC) Portable Atmospheric Research Center (SPARC) and the Collaborative Lower Atmosphere Profiling System (CLAMPS), have already experienced great success in characterizing a variety of phenomena. Each system contains an Atmospheric Emitted Radiance Interferometer for thermodynamic profiling and a Halo Photonics Stream Line Doppler wind lidar for kinematic profiles. These instruments are augmented with various in situ and remote sensing instruments to provide a comprehensive assessment of the evolution of the lower troposphere at high temporal resolution (5 min or better). While SPARC and CLAMPS can be deployed independently, the common instrument configuration means that joint deployments with well-coordinated data collection and analysis routines are easily facilitated.In the past several years, SPARC and CLAMPS have participated in numerous field campaigns, which range from mesoscale campaigns that require the rapid deployment and teardown of observing systems to multiweek fixed deployments, providing crucial insights into the behavior of many different atmospheric boundary layer processes while training the next generation of atmospheric scientists. As calls for a nationwide ground-based profiling network continue, SPARC and CLAMPS can play an important role as test beds and prototype nodes for such a network.


2019 ◽  
Vol 76 (3) ◽  
pp. 707-727 ◽  
Author(s):  
Yaping Wang ◽  
Christopher A. Davis ◽  
Yongjie Huang

Abstract Idealized simulations are conducted using the Cloud Model version 1 (CM1) to explore the mechanism of tropical cyclone (TC) genesis from a preexisting midtropospheric vortex that forms in radiative–convective equilibrium. With lower-tropospheric air approaching near saturation during TC genesis, convective cells become stronger, along with the intensifying updrafts and downdrafts and the larger area coverage of updrafts relative to downdrafts. Consequently, the low-level vertical mass flux increases, inducing vorticity amplification above the boundary layer. Of interest is that while surface cold pools help organize lower-tropospheric updrafts, genesis still proceeds, only slightly delayed, if subcloud evaporation cooling and cold pool intensity are drastically reduced. More detrimental is the disruption of near saturation through the introduction of weak vertical wind shear. The lower-tropospheric dry air suppresses the strengthening of convection, leading to weaker upward mass flux and much slower near-surface vortex spinup. We also find that surface spinup is similarly inhibited by decreasing surface drag despite the existence of a nearly saturated column, whereas larger drag accelerates spinup. Increased vorticity above the boundary layer is followed by the emergence of a horizontal pressure gradient through the depth of the boundary layer. Then the corresponding convergence resulting from the gradient imbalance in the frictional boundary layer causes vorticity amplification near the surface. It is suggested that near saturation in the lower troposphere is critical for increasing the mass flux and vorticity just above the boundary layer, but it is necessary yet insufficient because the spinup is strongly governed by boundary layer dynamics.


2014 ◽  
Vol 7 (9) ◽  
pp. 3127-3138 ◽  
Author(s):  
R. L. Herman ◽  
J. E. Cherry ◽  
J. Young ◽  
J. M. Welker ◽  
D. Noone ◽  
...  

Abstract. The EOS (Earth Observing System) Aura Tropospheric Emission Spectrometer (TES) retrieves the atmospheric HDO / H2O ratio in the mid-to-lower troposphere as well as the planetary boundary layer. TES observations of water vapor and the HDO isotopologue have been compared with nearly coincident in situ airborne measurements for direct validation of the TES products. The field measurements were made with a commercially available Picarro L1115-i isotopic water analyzer on aircraft over the Alaskan interior boreal forest during the three summers of 2011 to 2013. TES special observations were utilized in these comparisons. The TES averaging kernels and a priori constraints have been applied to the in situ data, using version 5 (V005) of the TES data. TES calculated errors are compared with the standard deviation (1σ) of scan-to-scan variability to check consistency with the TES observation error. Spatial and temporal variations are assessed from the in situ aircraft measurements. It is found that the standard deviation of scan-to-scan variability of TES δD is ±34.1‰ in the boundary layer and ± 26.5‰ in the free troposphere. This scan-to-scan variability is consistent with the TES estimated error (observation error) of 10–18‰ after accounting for the atmospheric variations along the TES track of ±16‰ in the boundary layer, increasing to ±30‰ in the free troposphere observed by the aircraft in situ measurements. We estimate that TES V005 δD is biased high by an amount that decreases with pressure: approximately +123‰ at 1000 hPa, +98‰ in the boundary layer and +37‰ in the free troposphere. The uncertainty in this bias estimate is ±20‰. A correction for this bias has been applied to the TES HDO Lite Product data set. After bias correction, we show that TES has accurate sensitivity to water vapor isotopologues in the boundary layer.


2011 ◽  
Vol 11 (9) ◽  
pp. 4491-4503 ◽  
Author(s):  
J. Worden ◽  
D. Noone ◽  
J. Galewsky ◽  
A. Bailey ◽  
K. Bowman ◽  
...  

Abstract. The Aura satellite Tropospheric Emission Spectrometer (TES) instrument is capable of measuring the HDO/H2O ratio in the lower troposphere using thermal infrared radiances between 1200 and 1350 cm−1. However, direct validation of these measurements is challenging due to a lack of in situ measured vertical profiles of the HDO/H2O ratio that are spatially and temporally co-located with the TES observations. From 11 October through 5 November 2008, we undertook a campaign to measure HDO and H2O at the Mauna Loa observatory in Hawaii for comparison with TES observations. The Mauna Loa observatory is situated at 3.1 km above sea level or approximately 680 hPa, which is approximately the altitude where the TES HDO/H2O observations show the most sensitivity. Another advantage of comparing in situ data from this site to estimates derived from thermal IR radiances is that the volcanic rock is heated by sunlight during the day, thus providing significant thermal contrast between the surface and atmosphere; this thermal contrast increases the sensitivity to near surface estimates of tropospheric trace gases. The objective of this inter-comparison is to better characterize a bias in the TES HDO data, which had been previously estimated to be approximately 5 % too high for a column integrated value between 850 hPa and 500 hPa. We estimate that the TES HDO profiles should be corrected downwards by approximately 4.8 % and 6.3 % for Versions 3 and 4 of the data respectively. These corrections must account for the vertical sensitivity of the TES HDO estimates. We estimate that the precision of this bias correction is approximately 1.9 %. The accuracy is driven by the corrections applied to the in situ HDO and H2O measurements using flask data taken during the inter-comparison campaign and is estimated to be less than 1 %. Future comparisons of TES data to accurate vertical profiles of in situ measurements are needed to refine this bias estimate.


Sign in / Sign up

Export Citation Format

Share Document