scholarly journals The MACC reanalysis: an 8 yr data set of atmospheric composition

2013 ◽  
Vol 13 (8) ◽  
pp. 4073-4109 ◽  
Author(s):  
A. Inness ◽  
F. Baier ◽  
A. Benedetti ◽  
I. Bouarar ◽  
S. Chabrillat ◽  
...  

Abstract. An eight-year long reanalysis of atmospheric composition data covering the period 2003–2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system. This reanalysis provides fields of chemically reactive gases, namely carbon monoxide, ozone, nitrogen oxides, and formaldehyde, as well as aerosols and greenhouse gases globally at a horizontal resolution of about 80 km for both the troposphere and the stratosphere. This paper describes the assimilation system for the reactive gases and presents validation results for the reactive gas analysis fields to document the data set and to give a first indication of its quality. Tropospheric CO values from the MACC reanalysis are on average 10–20% lower than routine observations from commercial aircrafts over airports through most of the troposphere, and have larger negative biases in the boundary layer at urban sites affected by air pollution, possibly due to an underestimation of CO or precursor emissions. Stratospheric ozone fields from the MACC reanalysis agree with ozonesondes and ACE-FTS data to within ±10% in most seasons and regions. In the troposphere the reanalysis shows biases of −5% to +10% with respect to ozonesondes and aircraft data in the extratropics, but has larger negative biases in the tropics. Area-averaged total column ozone agrees with ozone fields from a multi-sensor reanalysis data set to within a few percent. NO2 fields from the reanalysis show the right seasonality over polluted urban areas of the NH and over tropical biomass burning areas, but underestimate wintertime NO2 maxima over anthropogenic pollution regions and overestimate NO2 in northern and southern Africa during the tropical biomass burning seasons. Tropospheric HCHO is well simulated in the MACC reanalysis even though no satellite data are assimilated. It shows good agreement with independent SCIAMACHY retrievals over regions dominated by biogenic emissions with some anthropogenic input, such as the eastern US and China, and also over African regions influenced by biogenic sources and biomass burning.

2012 ◽  
Vol 12 (12) ◽  
pp. 31247-31347 ◽  
Author(s):  
A. Inness ◽  
F. Baier ◽  
A. Benedetti ◽  
I. Bouarar ◽  
S. Chabrillat ◽  
...  

Abstract. An eight-year long reanalysis of atmospheric composition data covering the period 2003–2010 was constructed as part of the FP7 funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system. This reanalysis provides fields of chemically reactive gases, namely carbon monoxide, ozone, nitrogen oxides, and formaldehyde, as well as aerosols and greenhouse gases globally at a resolution of about 80 km for both the troposphere and the stratosphere. This paper describes the assimilation system for the reactive gases and presents validation results for the reactive gases analysis fields to document the dataset and to give a first indication of its quality. Tropospheric CO values from the MACC reanalysis are on average 10–20% lower than routine observations from commercial aircrafts over airports through most of the troposphere, and have larger negative biases in the boundary layer at urban sites affected by air pollution, possibly due to an underestimation of CO or precursor emissions. Stratospheric ozone fields from the MACC reanalysis agree with ozone sondes and ACE-FTS data to within ±10% in most situations. In the troposphere the reanalysis shows biases of −5% to +10% with respect to ozone sondes and aircraft data in the extratropics, but has larger negative biases in the tropics. Area averaged total column ozone agrees with ozone fields from a multi sensor reanalysis data set to within a few percent. NO2 fields from the reanalysis show the right seasonality over polluted urban areas of the NH and over tropical biomass burning areas, but underestimate wintertime NO2 maxima over anthropogenic pollution regions and overestimate NO2 in Northern and Southern Africa during the tropical biomass burning seasons. Tropospheric HCHO is well simulated in the MACC reanalysis even though no satellite data are assimilated. It shows good agreement with independent SCIAMACHY retrievals over regions dominated by biogenic emissions with some anthropogenic input, such as the Eastern US and China, and also over African regions influenced by biogenic sources and biomass burning.


2017 ◽  
Vol 17 (3) ◽  
pp. 1945-1983 ◽  
Author(s):  
Johannes Flemming ◽  
Angela Benedetti ◽  
Antje Inness ◽  
Richard J. Engelen ◽  
Luke Jones ◽  
...  

Abstract. A new global reanalysis data set of atmospheric composition (AC) for the period 2003–2015 has been produced by the Copernicus Atmosphere Monitoring Service (CAMS). Satellite observations of total column (TC) carbon monoxide (CO) and aerosol optical depth (AOD), as well as several TC and profile observations of ozone, have been assimilated with the Integrated Forecasting System for Composition (C-IFS) of the European Centre for Medium-Range Weather Forecasting. Compared to the previous Monitoring Atmospheric Composition and Climate (MACC) reanalysis (MACCRA), the new CAMS interim reanalysis (CAMSiRA) is of a coarser horizontal resolution of about 110 km, compared to 80 km, but covers a longer period with the intent to be continued to present day. This paper compares CAMSiRA with MACCRA and a control run experiment (CR) without assimilation of AC retrievals. CAMSiRA has smaller biases than the CR with respect to independent observations of CO, AOD and stratospheric ozone. However, ozone at the surface could not be improved by the assimilation because of the strong impact of surface processes such as dry deposition and titration with nitrogen monoxide (NO), which were both unchanged by the assimilation. The assimilation of AOD led to a global reduction of sea salt and desert dust as well as an exaggerated increase in sulfate. Compared to MACCRA, CAMSiRA had smaller biases for AOD, surface CO and TC ozone as well as for upper stratospheric and tropospheric ozone. Finally, the temporal consistency of CAMSiRA was better than the one of MACCRA. This was achieved by using a revised emission data set as well as by applying careful selection and bias correction to the assimilated retrievals. CAMSiRA is therefore better suited than MACCRA for the study of interannual variability, as demonstrated for trends in surface CO.


2016 ◽  
Author(s):  
J. Flemming ◽  
A. Benedetti ◽  
A. Inness ◽  
R. Engelen ◽  
L. Jones ◽  
...  

Abstract. A new global reanalysis data set of atmospheric composition (AC) for the period 2003–2015 has been produced by the Copernicus Atmosphere Monitoring Service (CAMS). Satellite observations of total column (TC) carbon monoxide (CO) and aerosol optical depth (AOD) as well as several TC and profile observation of ozone have been assimilated with the Integrated Forecasting System for Composition (C-IFS) of the European Centre for Medium-Range Weather Forecasting. Compared to the previous MACC reanalysis (MACCRA), the new CAMS interim reanalysis (CAMSiRA) is of a coarser horizontal resolution of about 110 km compared to 80 km but covers a longer period with the intent to be continued to present day. This paper compares CAMSiRA against MACCRA and a control experiment (CR) without assimilation of AC retrievals. CAMSiRA has smaller biases than CR with respect to independent observations of CO, AOD and stratospheric ozone. However, ozone at the surface could not be improved by the assimilation. The assimilation of AOD led to a global reduction of sea salt and desert dust as well as an exaggerated increase in sulphate. Compared to MACCRA, CAMSiRA had smaller biases for AOD, surface CO and TC ozone as well as for upper stratospheric and tropospheric ozone. Finally, the temporal consistency of CAMSiRA was clearly better than the one of MACCRA. This was achieved by using a revised emission data set as well as by applying a careful selection and bias-correction of the assimilated retrievals. CAMSiRA is therefore better suited than MACCRA for the study of inter-annual variability than MACCRA as demonstrated for trends in surface CO.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Annette Wagner ◽  
Y. Bennouna ◽  
A.-M. Blechschmidt ◽  
G. Brasseur ◽  
S. Chabrillat ◽  
...  

The Copernicus Atmosphere Monitoring Service (CAMS) is operationally providing forecast and reanalysis products of air quality and atmospheric composition. In this article, we present an extended evaluation of the CAMS global reanalysis data set of four reactive gases, namely, ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO), using multiple independent observations. Our results show that the CAMS model system mostly provides a stable and accurate representation of the global distribution of reactive gases over time. Our findings highlight the crucial impact of satellite data assimilation and emissions, investigated through comparison with a model run without assimilated data. Stratospheric and tropospheric O3 are mostly well constrained by the data assimilation, except over Antarctica after 2012/2013 due to changes in the assimilated data. Challenges remain for O3 in the Tropics and high-latitude regions during winter and spring. At the surface and for short-lived species (NO2), data assimilation is less effective. Total column CO in the CAMS reanalysis is well constrained by the assimilated satellite data. The control run, however, shows large overestimations of total column CO in the Southern Hemisphere and larger year-to-year variability in all regions. Concerning the long-term stability of the CAMS model, we note drifts in the time series of biases for surface O3 and CO in the Northern midlatitudes and Tropics and for NO2 over East Asia, which point to biased emissions. Compared to the previous Monitoring Atmospheric Composition and Climate reanalysis, changes in the CAMS chemistry module and assimilation system helped to reduce biases and enhance the long-term temporal consistency of model results for the CAMS reanalysis.


2018 ◽  
Author(s):  
Sophie Szopa ◽  
Rémi Thiéblemont ◽  
Slimane Bekki ◽  
Svetlana Botsyun ◽  
Pierre Sepulchre

Abstract. The stratospheric ozone layer plays a key role in atmospheric thermal structure and circulation. Although stratospheric ozone distribution is sensitive to changes in composition and climate, the modifications of stratospheric ozone are not usually considered in climate studies at geological time scales. Here, we evaluate with a chemical-climate model the potential role of stratospheric ozone chemistry in the case of the Eocene hot conditions. We show that the structure of the ozone layer is significantly different under these conditions (4×CO2 climate and high concentrations of tropospheric N2O and CH4). While at mid and high latitudes, the total column ozone is found to be enhanced, the tropical ozone column remains more or less unchanged. These ozone changes are related to the stratospheric cooling and an acceleration of stratospheric Brewer-Dobson circulation simulated under Eocene climate. The meridional distribution of the total ozone column appears also to be strongly modified, showing particularly pronounced mid-latitudes maxima and steeper negative poleward gradient from these maxima. These anomalies are consistent with changes in the seasonal evolution of the polar vortex during the winter, especially in the Northern Hemisphere. Compared to a pre-industrial atmospheric composition, the changes in local ozone concentration reach up to 40 % for zonal annual mean and affect temperature by a few Kelvins in the middle stratosphere. As inter-model differences in simulating the deep past temperatures are quite high, the consideration of atmospheric chemistry, which is computationally demanding in Earth system models, may seem superfluous. However, our results suggest that using stratospheric ozone calculated by the model (and hence more physically consistent with Eocene conditions) instead of the commonly specified preindustrial ozone distribution can change the simulated global surface air temperature by 14 %. This error is of the same order as the effect of non-CO2 boundary conditions (topography, bathymetry, solar constant & vegetation). Moreover, the results highlight the sensitivity of stratospheric ozone to hot climate conditions. Since the climate sensitivity to stratospheric ozone feedback largely differs between models, it must be better constrained not only for deep past conditions but also for future climates.


2017 ◽  
Author(s):  
Margreet J. E. van Marle ◽  
Silvia Kloster ◽  
Brian I. Magi ◽  
Jennifer R. Marlon ◽  
Anne-Laure Daniau ◽  
...  

Abstract. Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data has shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visibility observations. These proxies provide opportunities to extrapolate emissions estimates based on satellite data starting in 1997 back in time, but each proxy has strengths and weaknesses regarding, for example, the spatial and temporal extents over which they are representative. We developed a new historic biomass burning emissions dataset starting in 1750 that merges the satellite record with several existing proxies, and uses the average of six models from the Fire Model Intercomparison Project (FireMIP) protocol to estimate emissions when the available proxies had limited coverage. According to our approach, global biomass burning emissions were relatively constant with 10-year averages varying between 1.8 and 2.3 Pg C year−1. Carbon emissions increased only slightly over the full time period and peaked during the 1990s after which they decreased gradually. There is substantial uncertainty in these estimates and patterns varied depending on choices regarding data representation, especially on regional scales. The observed pattern in fire carbon emissions is for a large part driven by African fires, which accounted for 58 % of global fire carbon emissions. African fire emissions declined since about 1950 due to conversion of savanna to cropland, and this decrease is partially compensated for by increasing emissions in deforestation zones of South America and Asia. These global fire emissions estimates are mostly suited for global analyses and will be used in the IPCC CMIP simulations.


2018 ◽  
Author(s):  
Antje Inness ◽  
Melanie Ades ◽  
Anna Agusti-Panareda ◽  
Jérôme Barré ◽  
Anna Benedictow ◽  
...  

Abstract. The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis is the latest global reanalysis data set of atmospheric composition produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), consisting of 3-dimensional time-consistent atmospheric composition fields, including aerosols and chemical species. The dataset currently covers the period 2003–2016 and will be extended in the future by adding one year each year. A reanalysis for greenhouse gases is being produced separately. The CAMS reanalysis builds on the experience gained during the production of the earlier Monitoring Atmospheric Composition and Climate (MACC) reanalysis and CAMS interim reanalysis. Satellite retrievals of total column CO, tropospheric column NO2, aerosol optical depth and total column, partial column and profile ozone retrievals were assimilated for the CAMS reanalysis with ECMWF’s Integrated Forecasting System. The new reanalysis has an increased horizontal resolution of about 80 km and provides more chemical species at a better temporal resolution (3-hourly analysis fields, 3-hourly forecast fields and hourly surface forecast fields) than the previously produced CAMS interim reanalysis. The CAMS reanalysis has smaller biases compared to independent ozone, carbon monoxide, nitrogen dioxide and aerosol optical depth observations than the previous two reanalyses and is much improved and more consistent in time, especially compared to the MACC reanalysis. The CAMS reanalysis is a dataset that can be used to compute climatologies, study trends, evaluate models, benchmark other reanalyses or serve as boundary conditions for regional models for past periods.


2013 ◽  
Vol 13 (20) ◽  
pp. 10373-10384 ◽  
Author(s):  
P. J. Nair ◽  
S. Godin-Beekmann ◽  
J. Kuttippurath ◽  
G. Ancellet ◽  
F. Goutail ◽  
...  

Abstract. The trends and variability of ozone are assessed over a northern mid-latitude station, Haute-Provence Observatory (OHP: 43.93° N, 5.71° E), using total column ozone observations from the Dobson and Système d'Analyse par Observation Zénithale spectrometers, and stratospheric ozone profile measurements from light detection and ranging (lidar), ozonesondes, Stratospheric Aerosol and Gas Experiment (SAGE) II, Halogen Occultation Experiment (HALOE) and Aura Microwave Limb Sounder (MLS). A multivariate regression model with quasi-biennial oscillation (QBO), solar flux, aerosol optical thickness, heat flux, North Atlantic Oscillation (NAO) and a piecewise linear trend (PWLT) or equivalent effective stratospheric chlorine (EESC) functions is applied to the ozone anomalies. The maximum variability of ozone in winter/spring is explained by QBO and heat flux in the ranges 15–45 km and 15–24 km, respectively. The NAO shows maximum influence in the lower stratosphere during winter, while the solar flux influence is largest in the lower and middle stratosphere in summer. The total column ozone trends estimated from the PWLT and EESC functions are of −1.47 ± 0.27 and −1.40 ± 0.25 DU yr−1, respectively, over the period 1984–1996 and about 0.55 ± 0.30 and 0.42 ± 0.08 DU yr−1, respectively, over the period 1997–2010. The ozone profiles yield similar and significant EESC-based and PWLT trends for 1984–1996, and are about −0.5 and −0.8% yr−1 in the lower and upper stratosphere, respectively. For 1997–2010, the EESC-based and PWLT estimates are of the order of 0.3 and 0.1% yr−1, respectively, in the 18–28 km range, and at 40–45 km, EESC provides significant ozone trends larger than the insignificant PWLT results. Furthermore, very similar vertical trends for the respective time periods are also deduced from another long-term satellite-based data set (GOZCARDS–Global OZone Chemistry And Related trace gas Data records for the Stratosphere) sampled at northern mid-latitudes. Therefore, this analysis unveils ozone recovery signals from total column ozone and profile measurements at OHP, and hence in the northern mid-latitudes.


2015 ◽  
Vol 15 (9) ◽  
pp. 5275-5303 ◽  
Author(s):  
A. Inness ◽  
A.-M. Blechschmidt ◽  
I. Bouarar ◽  
S. Chabrillat ◽  
M. Crepulja ◽  
...  

Abstract. Daily global analyses and 5-day forecasts are generated in the context of the European Monitoring Atmospheric Composition and Climate (MACC) project using an extended version of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The IFS now includes modules for chemistry, deposition and emission of reactive gases, aerosols, and greenhouse gases, and the 4-dimensional variational data assimilation scheme makes use of multiple satellite observations of atmospheric composition in addition to meteorological observations. This paper describes the data assimilation setup of the new Composition-IFS (C-IFS) with respect to reactive gases and validates analysis fields of ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2) for the year 2008 against independent observations and a control run without data assimilation. The largest improvement in CO by assimilation of Measurements of Pollution in the Troposphere (MOPITT) CO columns is seen in the lower troposphere of the Northern Hemisphere (NH) extratropics during winter, and during the South African biomass-burning season. The assimilation of several O3 total column and stratospheric profile retrievals greatly improves the total column, stratospheric and upper tropospheric O3 analysis fields relative to the control run. The impact on lower tropospheric ozone, which comes from the residual of the total column and stratospheric profile O3 data, is smaller, but nevertheless there is some improvement particularly in the NH during winter and spring. The impact of the assimilation of tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) is small because of the short lifetime of NO2, suggesting that NO2 observations would be better used to adjust emissions instead of initial conditions. The results further indicate that the quality of the tropospheric analyses and of the stratospheric ozone analysis obtained with the C-IFS system has improved compared to the previous "coupled" model system of MACC.


Sign in / Sign up

Export Citation Format

Share Document