scholarly journals Volcanic SO<sub>2</sub> fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

2013 ◽  
Vol 13 (12) ◽  
pp. 5945-5968 ◽  
Author(s):  
N. Theys ◽  
R. Campion ◽  
L. Clarisse ◽  
H. Brenot ◽  
J. van Gent ◽  
...  

Abstract. Sulphur dioxide (SO2) fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile), Nyamulagira (DR Congo) and Nabro (Eritrea). High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A) and thermal infrared (IASI/MetOp-A) spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua) are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case). Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

2012 ◽  
Vol 12 (12) ◽  
pp. 31349-31412 ◽  
Author(s):  
N. Theys ◽  
R. Campion ◽  
L. Clarisse ◽  
H. Brenot ◽  
J. van Gent ◽  
...  

Abstract. Sulphur dioxide (SO2) fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of dispersed and large-scale plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile), Nyamulagira (DR Congo) and Nabro (Eritrea). High spectral resolution satellite instruments operating both in the UV-visible (OMI/Aura and GOME-2/MetOp-A) and thermal infrared (IASI/MetOp-A) spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua) are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case). Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables to assess the consistency of the SO2 products from the different sensors used.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eduardo Rossi ◽  
Gholamhossein Bagheri ◽  
Frances Beckett ◽  
Costanza Bonadonna

AbstractA large amount of volcanic ash produced during explosive volcanic eruptions has been found to sediment as aggregates of various types that typically reduce the associated residence time in the atmosphere (i.e., premature sedimentation). Nonetheless, speculations exist in the literature that aggregation has the potential to also delay particle sedimentation (rafting effect) even though it has been considered unlikely so far. Here, we present the first theoretical description of rafting that demonstrates how delayed sedimentation may not only occur but is probably more common than previously thought. The fate of volcanic ash is here quantified for all kind of observed aggregates. As an application to the case study of the 2010 eruption of Eyjafjallajökull volcano (Iceland), we also show how rafting can theoretically increase the travel distances of particles between 138–710 μm. These findings have fundamental implications for hazard assessment of volcanic ash dispersal as well as for weather modeling.


2021 ◽  
Vol 13 (8) ◽  
pp. 1594
Author(s):  
Songkang Kim ◽  
Sang-Jong Park ◽  
Hana Lee ◽  
Dha Hyun Ahn ◽  
Yeonjin Jung ◽  
...  

The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than “which spatial resolution is used” for the investigation of the Antarctic TOC pattern. Additionally, the quality of satellite TOC is regionally different (e.g., OMI TOC is a little higher at the King Sejong station, but lower at the Zhongshan station than the Brewer TOC). Thus, it seems necessary to consider the difference of multiple satellite data for better assessing the spatiotemporal pattern of Antarctic TOC.


2016 ◽  
Vol 16 (7) ◽  
pp. 4343-4367 ◽  
Author(s):  
Elisa Carboni ◽  
Roy G. Grainger ◽  
Tamsin A. Mather ◽  
David M. Pyle ◽  
Gareth E. Thomas ◽  
...  

Abstract. Sulfur dioxide (SO2) is an important atmospheric constituent that plays a crucial role in many atmospheric processes. Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. The Infrared Atmospheric Sounding Interferometer (IASI) on the METOP satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 and from 1300 to 1410 cm−1 (the 7.3 and 8.7 µm SO2 bands) returning both SO2 amount and altitude data. The scheme described in Carboni et al. (2012) has been applied to measure volcanic SO2 amount and altitude for 14 explosive eruptions from 2008 to 2012. The work includes a comparison with the following independent measurements: (i) the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii) the SO2 plumes heights, for the 2010 Eyjafjallajökull and 2011 Grimsvötn eruptions, have been compared with CALIPSO backscatter profiles. The results of the comparisons show that IASI SO2 measurements are not affected by underlying cloud and are consistent (within the retrieved errors) with the other measurements. The series of analysed eruptions (2008 to 2012) show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency for volcanic SO2 to reach the level of the tropopause during many of the moderately explosive eruptions observed. For the eruptions observed, this tendency was independent of the maximum amount of SO2 (e.g. 0.2 Tg for Dalafilla compared with 1.6 Tg for Nabro) and of the volcanic explosive index (between 3 and 5).


2007 ◽  
Vol 7 (2) ◽  
pp. 4657-4672 ◽  
Author(s):  
A. J. Prata ◽  
S. A. Carn ◽  
A. Stohl ◽  
J. Kerkmann

Abstract. Volcanic eruptions emit gases, ash particles and hydrometeors into the atmosphere, occasionally reaching great heights to reside in the stratospheric overworld where they affect the radiative balance of the atmosphere and the earth's climate. Here we use satellite measurements and a Lagrangian particle dispersion model to determine the mass loadings, vertical penetration, horizontal extent, dispersion and transport of volcanic gases and particles in the stratosphere from the volcanic cloud emitted during the 20 May 2006 eruption of Soufriere Hills volcano, Montserrat, West Indies. Infrared, ultraviolet and microwave radiation measurements from two polar orbiters are used to quantify the gases and particles, and track the movement of the cloud for 23 days, over a distance of ~18 000 km. Approximately, 0.1±0.01 Tg(S) was injected into the stratosphere in the form of SO2: the largest single sulfur input to the stratosphere in 2006. Microwave Limb Sounder measurements indicate an enhanced mass of HCl of ~0.003–0.01 Tg. Geosynchronous satellite data reveal the rapid nature of the stratospheric injection and indicate that the eruption cloud contained ~2 Tg of ice, with very little ash reaching the stratosphere. These new satellite measurements of volcanic gases and particles can be used to test the sensitivity of climate to volcanic forcing and assess the impact of stratospheric sulfates on climate cooling.


2015 ◽  
Vol 7 (1) ◽  
pp. 1077-1095 ◽  
Author(s):  
B. Bernard ◽  
U. Kueppers ◽  
H. Ortiz

Abstract. Explosive volcanic eruptions are commonly characterized based on a thorough analysis of the generated deposits. Amongst other characteristics in physical volcanology, density and porosity of juvenile clasts are some of the most frequently used characteristics to constrain eruptive dynamics. In this study, we evaluate the sensitivity of density and porosity data and introduce a weighting parameter to correct issues raised by the use of frequency analysis. Results of textural investigation can be biased by clast selection. Using statistical tools as presented here, the meaningfulness of a conclusion can be checked for any dataset easily. This is necessary to define whether or not a sample has met the requirements for statistical relevance, i.e. whether a dataset is large enough to allow for reproducible results. Graphical statistics are used to describe density and porosity distributions, similar to those used for grain-size analysis. This approach helps with the interpretation of volcanic deposits. To illustrate this methodology we chose two large datasets: (1) directed blast deposits of the 3640–3510 BC eruption of Chachimbiro volcano (Ecuador) and (2) block-and-ash-flow deposits of the 1990–1995 eruption of Unzen volcano (Japan). We propose add the use of this analysis for future investigations to check the objectivity of results achieved by different working groups and guarantee the meaningfulness of the interpretation.


Author(s):  
V. P. Ustinov ◽  
E. L. Baranova ◽  
K. N. Visheratin ◽  
M. I. Grachev ◽  
A. V. Kalsin

The results of systematic (2003–2017) measurements of the total content and the volume mixing ratio of CO at Novolazarevskaya station with a spectrometer with a resolution of 0.2 cm– 1 are presented. The inverse problem of determining the total CO content, as well as interfering gases (H2O and N2O), was solved using the SFIT4 software package. Data analysis showed that over the measurement period the average total CO content at Novolazarevskaya amounted to (8 ± 2) 1017 molec/cm2, and the average volume mixing ratio amounted to (37 ± 8) ppb. The obtained data are compared with variations in the total content of CO in Arrival-Heights station, with MOPITT satellite data, as well as with surface values of CO concentration at Syova station. The maximum values of CO are observed in September, the minimum — in January–February. For all the considered series, the trends are insignificant, while there are periods of increased CO content (2010). In recent years (2014–2017) there is a tendency towards an increase in the minimum values of CO. For  Novolazarevskaya and  Arrival-Heights satellite data are characterized by the excess of over ground data, amounting to 19% and 14%, respectively, while there is a seasonal dependence of the deviation with the minimum in December–January. Surface measurements of the total CO content are in fairly good agreement at Novolazarevskaya and Arrival-Heights, and since 2010 the average deviation is 2.4%. The average value of the concentration of CO on Syova 51 ppb is higher than the average volume mixing ratio at Novolazarevskaya. According to the spectral, wavelet and composite analyzes, in all the considered series there are oscillations in the range of 6–45 months with closely coinciding periods and phases.


Sign in / Sign up

Export Citation Format

Share Document