scholarly journals Surface gas pollutants in Lhasa, a highland city of Tibet – current levels and pollution implications

2014 ◽  
Vol 14 (19) ◽  
pp. 10721-10730 ◽  
Author(s):  
L. Ran ◽  
W. L. Lin ◽  
Y. Z. Deji ◽  
B. La ◽  
P. M. Tsering ◽  
...  

Abstract. Through several years of development, the city of Lhasa has become one of the most populated and urbanized areas on the highest plateau in the world. In the process of urbanization, current and potential air quality issues have been gradually concerned. To investigate the current status of air pollution in Lhasa, various gas pollutants including NOx, CO, SO2, and O3, were continuously measured from June 2012 to May 2013 at an urban site (29.40° N, 91.08° E, 3650 m a.s.l.). The seasonal variations of primary gas pollutants exhibited a peak from November to January with a large variability. High mixing ratios of primary trace gases almost exclusively occurred under low wind speed and showed no distinct dependence on wind direction, implying local urban emissions to be predominant. A comparison of NO2, CO, and SO2 mixing ratios in summer between 1998 and 2012 indicated a significant increase in emissions of these gas pollutants and a change in their intercorrelations, as a result of a substantial growth in the demand of energy consumption using fossil fuels instead of previously widely used biomass. The pronounced diurnal double peaks of primary trace gases in all seasons suggested automobile exhaust to be a major emission source in Lhasa. The secondary gas pollutant O3 displayed an average diurnal cycle of a shallow flat peak for about 4–5 h in the afternoon and a minimum in the early morning. Nighttime O3 was sometimes completely consumed by the high level of NOx. Seasonally, the variations of O3 mixing ratios displayed a low valley in winter and a peak in spring. In autumn and winter, transport largely contributed to the observed O3 mixing ratios, given its dependence on wind speed and wind direction, while in spring and summer photochemistry played an important role. A more efficient buildup of O3 mixing ratios in the morning and a higher peak in the afternoon was found in summer 2012 than in 1998. An enhancement in O3 mixing ratios would be expected in the future and more attention should be given to O3 photochemistry in response to increasing precursor emissions in this area.

2014 ◽  
Vol 14 (8) ◽  
pp. 11787-11814 ◽  
Author(s):  
L. Ran ◽  
W. L. Lin ◽  
Y. Z. Deji ◽  
B. La ◽  
P. M. Tsering ◽  
...  

Abstract. Through several years of development, the city of Lhasa has become one of the most populated and urbanized areas on the highest plateau in the world. In the process of urbanization, current and potential air quality issues have been gradually concerned. To investigate the current status of air pollution in Lhasa, various gas pollutants including NOx, CO, SO2 and O3 were continuously measured from June 2012 to May 2013 at an urban site (29.40° N, 91.08° E, 3650 m a.s.l.). The seasonal variations of primary gas pollutants exhibited a peak from November to January with a large variability. High concentrations of primary trace gases almost exclusively occurred under low wind speed and showed no distinct dependence on wind direction, implying local urban emissions to be predominant. A comparison of NO2, CO and SO2 concentrations in summer between 1998 and 2012 indicated a significant increase in emissions of these gas pollutants and a change in their intercorrelations, as a result of a substantial growth in the demand of energy consumption using fossil fuels instead of previously widely used biofuels. The pronounced diurnal double peaks of primary trace gases in all seasons suggested automobile exhaust to be a major emission source in Lhasa. The secondary gas pollutant O3 displayed an average diurnal cycle of a shallow flat peak for about 4–5 h in the afternoon and a minimum in the early morning. Nighttime O3 was sometimes completely consumed by the high level of NOx. Seasonally, the variations of O3 concentrations displayed a low valley in winter and a peak in spring. In autumn and winter, transport largely contributed to the observed O3 concentrations, given its dependence on wind speed and wind direction, while in spring and summer photochemistry played an important role. A more efficient buildup of O3 concentrations in the morning and a higher peak in the afternoon was found in summer 2012 than in 1998. An enhancement in O3 concentrations would be expected in the future and more attention should be given to O3 photochemistry in response to increasing precursor emissions in this area.


2011 ◽  
Vol 11 (2) ◽  
pp. 503-518 ◽  
Author(s):  
A. K. Baker ◽  
T. J. Schuck ◽  
F. Slemr ◽  
P. van Velthoven ◽  
A. Zahn ◽  
...  

Abstract. Between April and December 2008 the CARIBIC commercial aircraft conducted monthly measurement flights between Frankfurt, Germany and Chennai, India. These flights covered the period of the Asian summer monsoon (June–September), during which enhancements in a number of atmospheric species were observed in the upper troposphere over southwestern Asia. In addition to in situ measurements of trace gases and aerosols, whole air samples were collected during the flights, and these were subsequently analyzed for a suite of trace gases that included a number of C2–C8 non-methane hydrocarbons. Non-methane hydrocarbons are relatively short-lived compounds and the large enhancements in their mixing ratios in the upper troposphere over southwestern Asia during the monsoon, sometimes more than double their spring and fall means, provides qualitative evidence for the influence of convectively uplifted boundary layer air. The particularly large enhancements of the combustion tracers benzene and ethyne, along with the similarity of their ratios with carbon monoxide and emission ratios from the burning of household biofuels, indicate a strong influence of biofuel burning to NMHC emissions in this region. Conversely, the ratios of ethane and propane to carbon monoxide, along with the ratio between i-butane and n-butane, indicate a significant source of these compounds from the use of fossil fuels, and comparison to previous campaigns suggests that this source could be increasing. Photochemical aging patterns of NMHCs showed that the CARIBIC samples were collected in two distinctly different regions of the monsoon circulation: a southern region where air masses had been recently influenced by low level contact and a northern region, where air parcels had spent substantial time in transit in the upper troposphere before being probed. Estimates of age using ratios of individual NMHCs have ranges of 3–6 days in the south and 9–12 days in the north.


2015 ◽  
Vol 15 (12) ◽  
pp. 17553-17598
Author(s):  
S. T. Lennartz ◽  
G. Krysztofiak-Tong ◽  
C. A. Marandino ◽  
B.-M. Sinnhuber ◽  
S. Tegtmeier ◽  
...  

Abstract. Marine produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethylsulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and the Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at ocean surface and atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of VSLS. We show that differences between prescribing emissions and prescribing concentrations (−28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air–sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of different air–sea transfer velocity parameterizations k, which was performed here for eight different parameterizations. The testing of these different k values is of special interest for DMS, as recently published parameterizations derived by direct flux measurements using eddy covariance measurements suggest decreasing k values at high wind speeds or a linear relationship with wind speed. Implementing these parameterizations reduces discrepancies in modelled DMS atmospheric mixing ratios and observations by a factor of 1.5 compared to parameterizations with a quadratic or cubic relationship to wind speed.


2015 ◽  
Vol 15 (20) ◽  
pp. 11753-11772 ◽  
Author(s):  
S. T. Lennartz ◽  
G. Krysztofiak ◽  
C. A. Marandino ◽  
B.-M. Sinnhuber ◽  
S. Tegtmeier ◽  
...  

Abstract. Marine-produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethyl sulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at the ocean surface and in the atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of very short-lived substances (VSLS). We show that differences between prescribing emissions and prescribing concentrations (−28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air–sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of different air–sea transfer velocity (k) parameterizations, which was performed here for eight different parameterizations. The testing of these different k values is of special interest for DMS, as recently published parameterizations derived by direct flux measurements using eddy covariance measurements suggest decreasing k values at high wind speeds or a linear relationship with wind speed. Implementing these parameterizations reduces discrepancies in modelled DMS atmospheric mixing ratios and observations by a factor of 1.5 compared to parameterizations with a quadratic or cubic relationship to wind speed.


2014 ◽  
Vol 7 ◽  
pp. ASWR.S13987 ◽  
Author(s):  
Neerja Sharma ◽  
V.K. Dadhwal ◽  
Y. Kant ◽  
P. Mahesh ◽  
K. Mallikarjun ◽  
...  

We analyzed the influence of environmental parameters on the temporal variation of atmospheric carbon dioxide (CO2) mixing ratios in two environmentally contrasting Indian sites, Dehradun (30.1°N, 77.4°E, humid subtropical station) and Gadanki (13.5°N, 79.18°E, dry tropical station), from October 2010 to September 2011. The annual range of mixing ratios is low in Gadanki as compared to those of Dehradun because of relatively less monthly variation in temperature and relative humidity (RH) at Gadanki. At both the stations, the minimum mixing ratios are present during the high ecosystem productivity seasons in the afternoon hours. The maximum values are in the early morning hours. However, low wind speed conditions control the unexpected afternoon high mixing ratios in Gadanki during the pre-monsoon season. The early morning maximum is high during monsoon and post-monsoon seasons in Dehradun and Gadanki, respectively, whereas morning inflexion occurred earlier in Gadanki compared with Dehradun. The effect of cloudiness on the CO2 uptake depends on the canopy cover.


2020 ◽  
Vol 237 ◽  
pp. 03008
Author(s):  
Arti Choudhary ◽  
Pradeep Kumar ◽  
Anuradha Shukla ◽  
Siddhartha Singh ◽  
Abhay Kumar Singh

Air pollution and climate change is serious environmental concern due to its visible negative impact on human health. Around 14 Indian cities are placed among top 20 most polluted cities of the world. Trace gas like O3, NOx, CO and CO2 are important pollutants which is associated with human health, climate change and adverse effect on growth and yield of crops. Stratospheric O3 absorbs ultraviolet light and prevents it from reaching to the ground. Greenhouse effect of O3 and CO2 is prominent, O3 in upper troposphere and ranked 3rd for its radiative potential after the carbon dioxide and methane. The amount of O3 generated by photochemical reaction of air pollutants is much larger than the inflow from the stratosphere. This is indicating that trace gases and GHG are generated by anthropogenic activities. It is significantly high in urban area like megacity Delhi as compared to rural area due to excessive anthropogenic activity. The ground level measurements of surface trace gas like O3, NOx, CO and CO2 were conducted in Delhi-Mathura road near traffic intersection for year 2017, January to December. The daily mean concentration of O3, NOx, CO and CO2 were 23.11±17.26ppb (range 58.38 to 6.42ppb), 26.41±4.24ppb (ranges 48.14 to 24.09ppb), 1.56±4.24ppm (ranges 6.6 to 0.69ppm) and 342.54±33.49 (ranges 508.23 to 323.33ppm), respectively. The mixing ratios of O3 were highest of 32ppbv and lowest 17ppbv during the pre-monsoon and monsoon seasons, respectively. While the mixing ratios of both CO and NOx showed highest and lowest values during the winter and monsoon seasons, respectively. The analysis concluded seasonality of O3, CO and NOx were also governed by the long-range transport, mainly with the summer and winter monsoon circulations over the Indian subcontinent. The mixing ratios of CO and NOx show strong correlations during winter and pre-monsoon seasons, while poor correlation in the monsoon season. The mixing ratios of CO and NOx decreased with the increase in wind speed, while O3 tended to increase with the wind speed.


Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


Author(s):  
Mario Coccia

BACKGROUND Coronavirus disease 2019 (COVID-19) is viral infection that generates a severe acute respiratory syndrome with serious pneumonia that may result in progressive respiratory failure and death. OBJECTIVE This study has two goals. The first is to explain the main factors determining the diffusion of COVID-19 that is generating a high level of deaths. The second is to suggest a strategy to cope with future epidemic threats with of accelerated viral infectivity in society. METHODS Correlation and regression analyses on on data of N=55 Italian province capitals, and data of infected individuals at as of April 2020. RESULTS The main results are: o The accelerate and vast diffusion of COVID-19 in North Italy has a high association with air pollution. o Hinterland cities have average days of exceeding the limits set for PM10 (particulate matter 10 micrometers or less in diameter) equal to 80 days, and an average number of infected more than 2,000 individuals as of April 1st, 2020, coastal cities have days of exceeding the limits set for PM10 equal to 60 days and have about 700 infected in average. o Cities that average number of 125 days exceeding the limits set for PM10, last year, they have an average number of infected individual higher than 3,200 units, whereas cities having less than 100 days (average number of 48 days) exceeding the limits set for PM10, they have an average number of about 900 infected individuals. o The results reveal that accelerated transmission dynamics of COVID-19 in specific environments is due to two mechanisms given by: air pollution-to-human transmission and human-to-human transmission; in particular, the mechanisms of air pollution-to-human transmission play a critical role rather than human-to-human transmission. o The finding here suggests that to minimize future epidemic similar to COVID-19, the max number of days per year in which cities can exceed the limits set for PM10 or for ozone, considering their meteorological condition, is less than 50 days. After this critical threshold, the analytical output here suggests that environmental inconsistencies because of the combination between air pollution and meteorological conditions (with high moisture%, low wind speed and fog) trigger a take-off of viral infectivity (accelerated epidemic diffusion) with damages for health of population, economy and society. CONCLUSIONS Considering the complex interaction between air pollution, meteorological conditions and biological characteristics of viral infectivity, lessons learned for COVID-19 have to be applied for a proactive socioeconomic strategy to cope with future epidemics, especially an environmental policy based on reduction of air pollution mainly in hinterland zones of countries, having low wind speed, high percentage of moisture and fog that create an environment that can damage immune system of people and foster a fast transmission of viral infectivity similar to the COVID-19. CLINICALTRIAL not applicable


Sign in / Sign up

Export Citation Format

Share Document