scholarly journals Characterization of Trace Gases and Green House Gas in Megacity New Delhi

2020 ◽  
Vol 237 ◽  
pp. 03008
Author(s):  
Arti Choudhary ◽  
Pradeep Kumar ◽  
Anuradha Shukla ◽  
Siddhartha Singh ◽  
Abhay Kumar Singh

Air pollution and climate change is serious environmental concern due to its visible negative impact on human health. Around 14 Indian cities are placed among top 20 most polluted cities of the world. Trace gas like O3, NOx, CO and CO2 are important pollutants which is associated with human health, climate change and adverse effect on growth and yield of crops. Stratospheric O3 absorbs ultraviolet light and prevents it from reaching to the ground. Greenhouse effect of O3 and CO2 is prominent, O3 in upper troposphere and ranked 3rd for its radiative potential after the carbon dioxide and methane. The amount of O3 generated by photochemical reaction of air pollutants is much larger than the inflow from the stratosphere. This is indicating that trace gases and GHG are generated by anthropogenic activities. It is significantly high in urban area like megacity Delhi as compared to rural area due to excessive anthropogenic activity. The ground level measurements of surface trace gas like O3, NOx, CO and CO2 were conducted in Delhi-Mathura road near traffic intersection for year 2017, January to December. The daily mean concentration of O3, NOx, CO and CO2 were 23.11±17.26ppb (range 58.38 to 6.42ppb), 26.41±4.24ppb (ranges 48.14 to 24.09ppb), 1.56±4.24ppm (ranges 6.6 to 0.69ppm) and 342.54±33.49 (ranges 508.23 to 323.33ppm), respectively. The mixing ratios of O3 were highest of 32ppbv and lowest 17ppbv during the pre-monsoon and monsoon seasons, respectively. While the mixing ratios of both CO and NOx showed highest and lowest values during the winter and monsoon seasons, respectively. The analysis concluded seasonality of O3, CO and NOx were also governed by the long-range transport, mainly with the summer and winter monsoon circulations over the Indian subcontinent. The mixing ratios of CO and NOx show strong correlations during winter and pre-monsoon seasons, while poor correlation in the monsoon season. The mixing ratios of CO and NOx decreased with the increase in wind speed, while O3 tended to increase with the wind speed.

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1498
Author(s):  
Lucija Galić ◽  
Marija Špoljarević ◽  
Elizabeta Jakovac ◽  
Boris Ravnjak ◽  
Tihana Teklić ◽  
...  

Climate change poses a serious threat to agricultural production. Water deficit in agricultural soils is one of the consequences of climate change that has a negative impact on crop growth and yield. Selenium (Se) is known to be involved in plant defense against biotic and abiotic stress through metabolic, structural, and physiological activity in higher plants. The aim of this study was to investigate the physiological response of Se-biofortified soybean (Glycine max (L.) Merrill) seedlings under osmotic stress. For this research, we used biofortified soybean grain obtained after foliar Se biofortification in 2020. The experiment was conducted in a growth chamber with two cultivars (Lucija and Sonja) grown on filter paper in three replicates. The experiment was carried out with two watering treatments: distilled water (PEG-0) and 2.5% polyethylene glycol 6000 (PEG-2.5) on Se-biofortified seeds (Se) and nonbiofortified seeds (wSe). Contents of lipid peroxidation product (LP), free proline (PRO), total phenolic content (TP), ferric reducing antioxidant power (FRAP), and ascorbic acid (AA) were analyzed in 7-days-old seedlings. Significant differences were detected in the Se content of soybean grains between the two cultivars. A milder reaction to PEG-2.5 was observed in cultivar Lucija in both Se and wSe treatments, which might represent the mitigating effects of Se on osmotic stress in this cultivar. Contrarily, in cultivar Sonja, Se adversely affected all analyzed traits in the PEG-2.5 treatment. Ultimately, Se is a pro-oxidant in Sonja, whereas it represents an anti-oxidant in Lucija. In conclusion, different soybean cultivars show contrasting physiological reactions to both osmotic stress and Se. However, the activation of antioxidant pathways in Sonja can also be interpreted as added value in soybean seedlings as a functional food.


2014 ◽  
Vol 14 (19) ◽  
pp. 10721-10730 ◽  
Author(s):  
L. Ran ◽  
W. L. Lin ◽  
Y. Z. Deji ◽  
B. La ◽  
P. M. Tsering ◽  
...  

Abstract. Through several years of development, the city of Lhasa has become one of the most populated and urbanized areas on the highest plateau in the world. In the process of urbanization, current and potential air quality issues have been gradually concerned. To investigate the current status of air pollution in Lhasa, various gas pollutants including NOx, CO, SO2, and O3, were continuously measured from June 2012 to May 2013 at an urban site (29.40° N, 91.08° E, 3650 m a.s.l.). The seasonal variations of primary gas pollutants exhibited a peak from November to January with a large variability. High mixing ratios of primary trace gases almost exclusively occurred under low wind speed and showed no distinct dependence on wind direction, implying local urban emissions to be predominant. A comparison of NO2, CO, and SO2 mixing ratios in summer between 1998 and 2012 indicated a significant increase in emissions of these gas pollutants and a change in their intercorrelations, as a result of a substantial growth in the demand of energy consumption using fossil fuels instead of previously widely used biomass. The pronounced diurnal double peaks of primary trace gases in all seasons suggested automobile exhaust to be a major emission source in Lhasa. The secondary gas pollutant O3 displayed an average diurnal cycle of a shallow flat peak for about 4–5 h in the afternoon and a minimum in the early morning. Nighttime O3 was sometimes completely consumed by the high level of NOx. Seasonally, the variations of O3 mixing ratios displayed a low valley in winter and a peak in spring. In autumn and winter, transport largely contributed to the observed O3 mixing ratios, given its dependence on wind speed and wind direction, while in spring and summer photochemistry played an important role. A more efficient buildup of O3 mixing ratios in the morning and a higher peak in the afternoon was found in summer 2012 than in 1998. An enhancement in O3 mixing ratios would be expected in the future and more attention should be given to O3 photochemistry in response to increasing precursor emissions in this area.


2015 ◽  
Vol 15 (12) ◽  
pp. 17553-17598
Author(s):  
S. T. Lennartz ◽  
G. Krysztofiak-Tong ◽  
C. A. Marandino ◽  
B.-M. Sinnhuber ◽  
S. Tegtmeier ◽  
...  

Abstract. Marine produced short-lived trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3), methyliodide (CH3I) and dimethylsulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and the Earth's radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model real-time conditions at ocean surface and atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of VSLS. We show that differences between prescribing emissions and prescribing concentrations (−28 % for CH2Br2 to +11 % for CHBr3) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air–sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of different air–sea transfer velocity parameterizations k, which was performed here for eight different parameterizations. The testing of these different k values is of special interest for DMS, as recently published parameterizations derived by direct flux measurements using eddy covariance measurements suggest decreasing k values at high wind speeds or a linear relationship with wind speed. Implementing these parameterizations reduces discrepancies in modelled DMS atmospheric mixing ratios and observations by a factor of 1.5 compared to parameterizations with a quadratic or cubic relationship to wind speed.


2021 ◽  
Author(s):  
Simone M. Pieber ◽  
Dac-Loc Nguyen ◽  
Hendryk Czech ◽  
Stephan Henne ◽  
Nicolas Bukowiecki ◽  
...  

<p>Open biomass burning (BB) is a globally widespread phenomenon. The fires release pollutants, which are harmful for human and ecosystem health and alter the Earth's radiative balance. Yet, the impact of various types of BB on the global radiative forcing remains poorly constrained concerning greenhouse gas emissions, BB organic aerosol (OA) chemical composition and related light absorbing properties. Fire emissions composition is influenced by multiple factors (e.g., fuel and thereby vegetation-type, fuel moisture, fire temperature, available oxygen). Due to regional variations in these parameters, studies in different world regions are needed. Here we investigate the influence of seasonally recurring BB on trace gas concentration and air quality at the regional Global Atmosphere Watch (GAW) station Pha Din (PDI) in rural Northwestern Vietnam. PDI is located in a sparsely populated area on the top of a hill (1466 m a.s.l.) and is well suited to study the large-scale fires on the Indochinese Peninsula, whose pollution plumes are frequently transported towards the site [1]. We present continuous trace gas observations of CO<sub>2</sub>, CH<sub>4</sub>, CO, and O<sub>3</sub> conducted at PDI since 2014 and interpret the data with atmospheric transport simulations. Annually recurrent large scale BB leads to hourly time-scale peaks CO mixing ratios at PDI of 1000 to 1500 ppb around every April since the start of data collection in 2014. We complement this analysis with carbonaceous PM<sub>2.5 </sub>chemical composition analyzed during an intensive campaign in March-April 2015. This includes measurements of elemental and organic carbon (EC/OC) and more than 50 organic markers, such as sugars, PAHs, fatty acids and nitro-aromatics [2]. For the intensive campaign, we linked CO, CO<sub>2</sub>, CH<sub>4</sub> and O<sub>3</sub> mixing ratios to a statistical classification of BB events, which is based on OA composition. We found increased CO and O<sub>3</sub> levels during medium and high BB influence during the intensive campaign. A backward trajectory analysis confirmed different source regions for the identified periods based on the OA cluster. Typically, cleaner air masses arrived from northeast, i.e., mainland China and Yellow sea during the intensive campaign. The more polluted periods were characterized by trajectories from southwest, with more continental recirculation of the medium cluster, and more westerly advection for the high cluster. These findings highlight that BB activities in Northern Southeast Asia significantly enhances the regional OA loading, chemical PM<sub>2.5 </sub>composition and the trace gases in northwestern Vietnam. The presented analysis adds valuable data on air quality in a region of scarce data availability.</p><p> </p><p><strong>REFERENCES</strong></p><p>[1] Bukowiecki, N. et al. Effect of Large-scale Biomass Burning on Aerosol Optical Properties at the GAW Regional Station Pha Din, Vietnam. AAQR. 19, 1172–1187 (2019).</p><p>[2] Nguyen, D. L, et al. Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: a case-study in Northwestern Vietnam. ACPD., https://doi.org/10.5194/acp-2020-1027, in review, 2020.</p>


2019 ◽  
Vol 12 (8) ◽  
pp. 4149-4169 ◽  
Author(s):  
Jan-Marcus Nasse ◽  
Philipp G. Eger ◽  
Denis Pöhler ◽  
Stefan Schmitt ◽  
Udo Frieß ◽  
...  

Abstract. Over the last few decades, differential optical absorption spectroscopy (DOAS) has been used as a common technique to simultaneously measure abundances of a variety of atmospheric trace gases. Exploiting the unique differential absorption cross section of trace-gas molecules, mixing ratios can be derived by measuring the optical density along a defined light path and by applying the Beer–Lambert law. Active long-path (LP-DOAS) instruments can detect trace gases along a light path of a few hundred metres up to 20 km, with sensitivities for mixing ratios down to ppbv and pptv levels, depending on the trace-gas species. To achieve high measurement accuracy and low detection limits, it is crucial to reduce instrumental artefacts that lead to systematic structures in the residual spectra of the analysis. Spectral residual structures can be introduced by most components of a LP-DOAS measurement system, namely by the light source, in the transmission of the measurement signal between the system components or at the level of spectrometer and detector. This article focuses on recent improvements by the first application of a new type of light source and consequent changes to the optical setup to improve measurement accuracy. Most state-of-the-art LP-DOAS instruments are based on fibre optics and use xenon arc lamps or light-emitting diodes (LEDs) as light sources. Here we present the application of a laser-driven light source (LDLS), which significantly improves the measurement quality compared to conventional light sources. In addition, the lifetime of LDLS is about an order of magnitude higher than of typical Xe arc lamps. The small and very stable plasma discharge spot of the LDLS allows the application of a modified fibre configuration. This enables a better light coupling with higher light throughput, higher transmission homogeneity, and a better suppression of light from disturbing wavelength regions. Furthermore, the mode-mixing properties of the optical fibre are enhanced by an improved mechanical treatment. The combined effects lead to spectral residual structures in the range of 5-10×10-5 root mean square (rms; in units of optical density). This represents a reduction of detection limits of typical trace-gas species by a factor of 3–4 compared to previous setups. High temporal stability and reduced operational complexity of this new setup allow the operation of low-maintenance, automated LP-DOAS systems, as demonstrated here by more than 2 years of continuous observations in Antarctica.


2015 ◽  
Vol 12 (24) ◽  
pp. 7423-7434 ◽  
Author(s):  
K. R. Redeker ◽  
A. J. Baird ◽  
Y. A. Teh

Abstract. Large uncertainties persist in estimates of soil–atmosphere exchange of important trace gases. One significant source of uncertainty is the combined effect of wind and pressure on these fluxes. Wind and pressure effects are mediated by surface topography: few surfaces are uniform and over scales of tenths of a metre to tens of metres, air pressure and wind speed at the ground surface may be very variable. In this paper we consider how such spatial variability in air pressure and wind speed affects fluxes of trace gases. We used a novel nested wind tunnel design comprising a toroidial wind tunnel, in which wind speed and pressure may be controlled, set within a larger, linear wind tunnel. The effects of both wind speed and pressure differentials on fluxes of CO2 and CH4 within three different ecosystems (forest, grassland, peat bog) were quantified. We find that trace gas fluxes are positively correlated with both wind speed and pressure differential near the surface boundary. We argue that wind speed is the better proxy for trace gas fluxes because of its stronger correlation and because wind speed is more easily measured and wind speed measurement methodology more easily standardized. Trace gas fluxes, whether into or out of the soil, increase with wind speed within the toroidal tunnel (+55 % flux per m s−1), while faster, localized surface winds that are external to the toroidal wind tunnel reduce trace gas fluxes (−13 % flux per m s−1). These results are consistent for both trace gases over all ecosystem soil types studied. Our findings support the need for a revised conceptualization of soil–atmosphere gas exchange. We propose a conceptual model of the soil profile that has a "mixed layer", with fluxes controlled by wind speed, wind duration, porosity, water table, and gas production and consumption.


2014 ◽  
Vol 7 (9) ◽  
pp. 10059-10107
Author(s):  
M. J. Alvarado ◽  
V. H. Payne ◽  
K. E. Cady-Pereira ◽  
J. D. Hegarty ◽  
S. S. Kulawik ◽  
...  

Abstract. Errors in the spectroscopic parameters used in the forward radiative transfer model can introduce altitude-, spatially-, and temporally-dependent biases in trace gas retrievals. For well-mixed trace gases such as methane, where the variability of tropospheric mixing ratios is relatively small, reducing such biases is particularly important. We use aircraft observations from all five missions of the HIAPER Pole-to-Pole Observations (HIPPO) of the Carbon Cycle and Greenhouse Gases Study to evaluate the impact of updates to spectroscopic parameters for methane (CH4), water vapor (H2O), and nitrous oxide (N2O) on thermal infrared retrievals of methane from the NASA Aura Tropospheric Emission Spectrometer (TES). We find that updates to the spectroscopic parameters for CH4 result in a substantially smaller mean bias in the retrieved CH4 when compared with HIPPO observations. After an N2O-based correction, the bias in TES methane upper tropospheric representative values for measurements between 50° S and 50° N decreases from 56.9 to 25.7 ppbv, while the bias in the lower tropospheric representative value increases only slightly (from 27.3 to 28.4 ppbv). For retrievals with less than 1.6 DOFS, the bias is reduced from 26.8 to 4.8 ppbv. We also find that updates to the spectroscopic parameters for N2O reduce the errors in the retrieved N2O profile.


2005 ◽  
Vol 5 (4) ◽  
pp. 7247-7282
Author(s):  
M. Krebsbach ◽  
C. Schiller ◽  
D. Brunner ◽  
G. Günther ◽  
M. I. Hegglin ◽  
...  

Abstract. Airborne high resolution in situ measurements of a large set of trace gases including ozone (O3) and total water (H2O) in the upper troposphere and the lowermost stratosphere (UT/LMS) have been performed above Europe within the SPURT project. With its innovative campaign concept, SPURT provides an extensive data coverage of the UT/LMS in each season within the time period between November 2001 and July 2003. Ozone volume mixing ratios in the LMS show a distinct spring maximum and autumn minimum, whereas the O3 seasonal cycle in the UT is shifted by 2 to 3 month later towards the end of the year. The more variable H2O measurements reveal a maximum during spring/summer and a minimum during autumn/winter with no phase shift between the two atmospheric compartments. For a comprehensive insight into trace gas composition and variability in the UT/LMS several statistical methods are applied using chemical, thermal and dynamical vertical coordinates. In particular, 2-dimensional probability distribution functions serve as a tool to transform localised aircraft data to a more comprehensive view of the probed atmospheric region. It appears that both trace gases, O3 and H2O, reveal the most compact arrangement and are best correlated in the view of potential vorticity (PV) and distance to the local tropopause, indicating an advanced mixing state on these surfaces. Thus, strong gradients of PV seem to act as a transport barrier both in the vertical and the horizontal direction. The alignment of trace gas isopleths reflects the existence of a year-round extra-tropical tropopause transition layer. The SPURT measurements reveal that this layer is mainly affected by stratospheric air during winter/spring and by tropospheric air during autumn/summer. Mixing entropy values for O3 and H2O in the LMS appear to be maximal during spring and summer, respectively, indicating highest variability of these trace gases during the respective seasons.


2011 ◽  
Vol 4 (6) ◽  
pp. 1241-1260 ◽  
Author(s):  
C. Prados-Roman ◽  
A. Butz ◽  
T. Deutschmann ◽  
M. Dorf ◽  
L. Kritten ◽  
...  

Abstract. A novel limb scanning mini-DOAS spectrometer for the detection of UV/vis absorbing radicals (e.g., O3, BrO, IO, HONO) was deployed on the DLR-Falcon (Deutsches Zentrum für Luft- und Raumfahrt) aircraft and tested during the ASTAR 2007 campaign (Arctic Study of Tropospheric Aerosol, Clouds and Radiation) that took place at Svalbard (78° N) in spring 2007. Our main objectives during this campaign were to test the instrument, and to perform spectral and profile retrievals of tropospheric trace gases, with particular interest on investigating the distribution of halogen compounds (e.g., BrO) during the so-called ozone depletion events (ODEs). In the present work, a new method for the retrieval of vertical profiles of tropospheric trace gases from tropospheric DOAS limb observations is presented. Major challenges arise from modeling the radiative transfer in an aerosol and cloud particle loaded atmosphere, and from overcoming the lack of a priori knowledge of the targeted trace gas vertical distribution (e.g., unknown tropospheric BrO vertical distribution). Here, those challenges are tackled by a mathematical inversion of tropospheric trace gas profiles using a regularization approach constrained by a retrieved vertical profile of the aerosols extinction coefficient EM. The validity and limitations of the algorithm are tested with in situ measured EM, and with an absorber of known vertical profile (O4). The method is then used for retrieving vertical profiles of tropospheric BrO. Results indicate that, for aircraft ascent/descent observations, the limit for the BrO detection is roughly 1.5 pptv (pmol mol−1), and the BrO profiles inferred from the boundary layer up to the upper troposphere and lower stratosphere have around 10 degrees of freedom. For the ASTAR 2007 deployments during ODEs, the retrieved BrO vertical profiles consistently indicate high BrO mixing ratios (∼15 pptv) within the boundary layer, low BrO mixing ratios (≤1.5 pptv) in the free troposphere, occasionally enhanced BrO mixing ratios (∼1.5 pptv) in the upper troposphere, and increasing BrO mixing ratios with altitude in the lowermost stratosphere. These findings agree reasonably well with satellite and balloon-borne soundings of total and partial BrO atmospheric column densities.


2017 ◽  
Vol 10 (11) ◽  
pp. 4209-4234 ◽  
Author(s):  
Tilman Hüneke ◽  
Oliver-Alex Aderhold ◽  
Jannik Bounin ◽  
Marcel Dorf ◽  
Eric Gentry ◽  
...  

Abstract. We report on a novel six-channel optical spectrometer (further on called mini-DOAS instrument) for airborne nadir and limb measurements of atmospheric trace gases, liquid and solid water, and spectral radiances in the UV/vis and NIR spectral ranges. The spectrometer was developed for measurements from aboard the German High-Altitude and Long-Range (HALO) research aircraft during dedicated research missions. Here we report on the relevant instrumental details and the novel scaling method used to infer the mixing ratios of UV/vis absorbing trace gases from their absorption measured in limb geometry. The uncertainties of the scaling method are assessed in more detail than before for sample measurements of NO2 and BrO. Some first results are reported along with complementary measurements and comparisons with model predictions for a selected HALO research flight from Cape Town to Antarctica, which was performed during the research mission ESMVal on 13 September 2012.


Sign in / Sign up

Export Citation Format

Share Document