scholarly journals Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight

2014 ◽  
Vol 14 (3) ◽  
pp. 1517-1525 ◽  
Author(s):  
M. Zhong ◽  
M. Jang

Abstract. Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV–visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11–54% (except high RH) in the morning and then gradually decreased by 19–68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8–9 h sunlight exposure compared to fresh wood-burning OC.

2013 ◽  
Vol 13 (8) ◽  
pp. 20783-20807 ◽  
Author(s):  
M. Zhong ◽  
M. Jang

Abstract. Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV–visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm) of OC increased by 11–54% (except high RH) in the morning and then gradually decreased by 19–68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8–9 h sunlight exposure compared to fresh wood burning OC.


2019 ◽  
Author(s):  
Jianjun Li ◽  
Gehui Wang ◽  
Qi Zhang ◽  
Jin Li ◽  
Can Wu ◽  
...  

Abstract. Field burning of crop residue in early summer releases into the atmosphere a large amount of pollutants with significant impacts on the air quality and aerosol properties in the North China Plain (NCP). In order to investigate the influence of this regional anthropogenic activity on organic molecular characteristics of aerosol, we collected PM2.5 filter samples every 3 hours at a rural site of NCP during June 10th to 25th, 2013, and analyzed them for more than 100 organic tracer compounds, including both primary (n-alkanes, fatty acids/alcohols, sugar compounds, polycyclic aromatic hydrocarbons, hopanes, and phthalate esters) and secondary (phthalic acids, isoprene-, α-/β-pinene, β-caryophellen-, and toluene-derived products) organic aerosol tracers, as well as for organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC). Total concentrations of the measured organics ranged from 177 to 6248 ng m−3 (mean 1806 ± 1308 ng m−3) during the study period, most of which were contributed by sugar compounds, followed by fatty acids and fatty alcohols. Levoglucosan (240 ± 288 ng m−3) was the most abundant single compound and strongly correlated with OC and WSOC, suggesting that biomass burning (BB) is an important source of summertime organic aerosols in this rural region. Based on analysis of fire spots and backward trajectories of air masses, two representative periods were classified, which are (1) Period 1 (P1), Jun 13th 21:00–16th 15:00, when air masses were uniformly from the southeast part of NCP, where intensified open-field burning of biomass fuels occurred and (2) Period 2 (P2), Jun 22nd 12:00–24th 06:00, which were representative of local emission. Nearly all the measured PM components showed much higher concentrations in P1 than in P2. Although n-alkanes, fatty acids, and fatty alcohols presented similar temporal/diurnal variations as those of levoglucosan throughout the entire period, their molecular distributions were more dominated by high molecular weight (HMW) compounds in P1, demonstrating an enhanced contribution from BB emissions. In contrast, intensified BB emission in P1 seems to have limited influences on the concentrations of polycyclic aromatic hydrocarbons (PAHs), hopenes and phthalate esters. Both 3-hydroxyglutaric acid and β-caryophyllinic acid showed strong linearly correlations with levoglucosan (R2 = 0.72 and 0.80, respectively), indicating that biomass burning is also an important source for terpene-derived SOA formation. A tracer-based method was used to access the distribution of biomass-burning OC, fungal-spore OC and secondary organic carbon (SOC) derived from isoprene, α-/β-pinene, β-caryophyllene, and toluene in the different periods. The results showed that the contribution of biomass- burning OC to total OC in P1 (27.6 %) was 1.7 times of that in P2 (17.1 %). However, the contribution of SOC from oxidation of the four kinds of VOCs increased slightly from 16.3 % in P1 to 21.1 % in P2.


2018 ◽  
Author(s):  
Karl Espen Yttri ◽  
David Simpson ◽  
Robert Bergström ◽  
Gyula Kiss ◽  
Sönke Szidat ◽  
...  

Abstract. Source apportionment (SA) of carbonaceous aerosol was performed as part of the EMEP Intensive Measurement Periods (EIMPs), conducted in fall 2008 and winter/spring 2009. Levels of elemental carbon (EC), particulate organic carbon (OCp), particulate total carbon (TCp), levoglucosan and 14C in PM10, observed at nine European rural background sites, were used as input for the SA, whereas Latin Hypercube Sampling (LHS) was used to statistically treat the multitude of possible combinations resulting when ambient concentrations were combined with appropriate emission ratios. Five predefined sources/subcategories of carbonaceous aerosol were apportioned: Elemental and organic carbon from combustion of biomass (ECbb and OCbb) and from fossil fuel (ECff and OCff) sources, as well as remaining non-fossil organic carbon (OCrnf), typically dominated by natural sources. The carbonaceous aerosol concentration decreased from South to North, as did the concentration of the apportioned carbonaceous aerosol. OCrnf was more abundant in fall compared to winter/spring, reflecting the vegetative season, and made a larger contribution to TCp than anthropogenic sources (here: ECbb, OCbb, ECff and OCff) at four of the sites, whereas anthropogenic sources dominated at all but one sites in winter/spring. Levels of OCbb and ECbb were typically higher in winter/spring than in fall, due to larger residential wood burning emissions in the heating season, whereas there was no consistent seasonal pattern for fossil fuel emissions. Biomass burning (OCbb + ECbb) was the major anthropogenic source at the Central European sites in fall, whereas fossil fuel sources dominated at the southernmost and the two northernmost sites. In winter/spring, biomass burning was the major anthropogenic source at all but two sites. Addressing EC in particular, fossil fuel sources dominated at all sites in fall, whereas there was as shift towards biomass burning in winter/spring for the southernmost sites. Influence of residential wood burning emissions was substantial already in the first week of sampling in fall, constituting 30–50 % of TCp at most sites, showing that this source can be dominating even at a time of the year when the ambient temperature in Europe is still rather high. Model calculations were made, attempting to reproduce LHS-derived OCbb and ECbb, using two different residential wood burning emission inventories. Both simulations strongly under-predicted the LHS-derived values at most sites outside Scandinavia. Emissions based on a consistent bottom-up inventory for residential combustion (and including intermediate volatility compounds, IVOC) improved model results at most sites compared to the base-case emissions (based mainly on officially reported national emissions), but at the three southernmost sites the modelled OCbb and ECbb concentrations were still much lower than the LHS source apportioned results. The current study shows that natural sources is a major contributor to the carbonaceous aerosol in Europe even in fall and in winter/spring, and that residential wood burning emissions can be equally large or larger than that of fossil fuel sources, depending on season and region. Our results suggest that residential wood burning emissions are still poorly constrained for large parts of Europe. The need to improve emission inventories is obvious, with harmonization of emission factors between countries likely being the most important step to improve model calculations, not only for biomass burning emissions, but for European PM2.5 concentrations in general.


2011 ◽  
Vol 11 (22) ◽  
pp. 11497-11510 ◽  
Author(s):  
Y. Cheng ◽  
K.-B. He ◽  
M. Zheng ◽  
F.-K. Duan ◽  
Z.-Y. Du ◽  
...  

Abstract. The mass absorption efficiency (MAE) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer. The MAE measured at 632 nm was 8.45±1.71 and 9.41±1.92 m2 g−1 during winter and summer respectively. The daily variation of MAE was found to coincide with the abundance of organic carbon (OC), especially the OC to EC ratio, perhaps due to the enhancement by coating with organic aerosol (especially secondary organic aerosol, SOA) or the artifacts resulting from the redistribution of liquid-like organic particles during the filter-based absorption measurements. Using a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAE values were converted to the equivalent-MAE, which is the estimated value if using the same measurement methods as used in this study. The equivalent-MAE was found to be much lower in the regions heavily impacted by biomass burning (e.g., below 2.7 m2 g−1 for two Indian cities). Results from source samples (including diesel exhaust samples and biomass smoke samples) also demonstrated that emissions from biomass burning would decrease the MAE of EC. Moreover, optical properties of water-soluble organic carbon (WSOC) in Beijing were presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ−7, which was characteristic of the brown carbon spectra. The MAE of WSOC (measured at 365 nm) was 1.79±0.24 and 0.71±0.20 m2 g−1 during winter and summer respectively. The large discrepancy between the MAE of WSOC during winter and summer was attributed to the difference in the precursors of SOA such that anthropogenic volatile organic compounds (AVOCs) should be more important as the precursors of SOA in winter. The MAE of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study, perhaps due to the stronger emissions of biomass burning in China.


2014 ◽  
Vol 14 (19) ◽  
pp. 27459-27530 ◽  
Author(s):  
L. R. Crilley ◽  
W. J. Bloss ◽  
J. Yin ◽  
D. C. S. Beddows ◽  
R. M. Harrison ◽  
...  

Abstract. Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions can exceed the contributions from traffic emissions, and have been identified as a major cause of exceedences of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2.5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction likely included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC using average source ratios from published data was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Black carbon (BC) data from 2 and 7 wavelength Aethalometers were also apportioned into the contributions from biomass burning and traffic, based upon the enhanced absorption of wood smoke at UV wavelengths compared to BC. While the source apportionment of BC using this approach found similar trends to that observed for EC, higher percentage contributions of wood burning to BC were estimated. Based on a wood smoke mass conversion factor for levoglucosan, mean wood smoke mass at the sites was found to range from 0.78–1.0 μg m−3 during the campaign in January–February 2012. Measurements on a 160 m tower in London suggested a similar ratio of brown to black carbon (reflecting wood burning and traffic respectively) in regional and London air. Peaks in the levoglucosan and K+ concentrations were observed to coincide with low ambient temperature, consistent with domestic heating as a major contributing local source in London. Overall, the source of biomass smoke in London was concluded to be a background regional source overlaid by contributions from local domestic burning emissions. This could have implications when considering future emission control strategies during winter and may be the focus of future work in order to better determine the contributing local sources.


2019 ◽  
Vol 19 (16) ◽  
pp. 10481-10496 ◽  
Author(s):  
Jianjun Li ◽  
Gehui Wang ◽  
Qi Zhang ◽  
Jin Li ◽  
Can Wu ◽  
...  

Abstract. Field burning of crop residue in early summer releases a large amount of pollutants into the atmosphere with significant impacts on the air quality and aerosol properties in the North China Plain (NCP). In order to investigate the influence of this regional anthropogenic activity on molecular characteristics of organic aerosols, PM2.5 filter samples were collected with a 3 h interval at a rural site of NCP from 10 to 25 June 2013 and analyzed for more than 100 organic tracer compounds, including both primary (n-alkanes, fatty acids/alcohols, sugar compounds, polycyclic aromatic hydrocarbons, hopanes, and phthalate esters) and secondary organic aerosol (SOA) tracers (phthalic acids, isoprene-, α-/β-pinene, β-caryophyllene, and toluene-derived products), as well as organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC). Total concentrations of the measured organics ranged from 177 to 6248 ng m−3 (mean 1806±1308 ng m−3) during the study period, most of which were contributed by sugar compounds, followed by fatty acids and fatty alcohols. Levoglucosan (240±288 ng m−3) was the most abundant single compound and strongly correlated with OC and WSOC, suggesting that biomass burning (BB) is an important source of summertime organic aerosols in this rural region. Based on the analysis of fire spots and backward trajectories of air masses, two representative periods were classified, which are (1) Period 1 (P1), 13 June 21:00–16 June at 15:00 CST (China Standard Time), when air masses were uniformly distributed from the southeast part of NCP, where intensive open-field biomass burning occurred; and (2) Period 2 (P2), 22 June at 12:00 to 24 June at 06:00 CST, which is representative of local emission. Nearly all the measured PM components showed much higher concentrations in P1 than in P2. Although n-alkanes, fatty acids, and fatty alcohols presented similar temporal–diurnal variations as those of levoglucosan throughout the entire period, their molecular distributions were more dominated by high molecular weight (HMW) compounds in P1, demonstrating an enhanced contribution from BB emissions. In contrast, intensive BB emission in P1 seems to have limited influence on the concentrations of polycyclic aromatic hydrocarbons (PAHs), hopanes, and phthalate esters. Both 3-hydroxyglutaric acid and β-caryophyllinic acid showed strong linearly correlations with levoglucosan (R2=0.72 and 0.80, respectively), indicating that BB is also an important source for terpene-derived SOA formation. A tracer-based method was used to estimate the distributions of biomass-burning OC, fungal-spore OC, and secondary organic carbon (SOC) derived from isoprene, α-/β-pinene, β-caryophyllene, and toluene in the different periods. The results showed that the contribution of biomass-burning OC to total OC in P1 (27.6 %) was 1.7 times that in P2 (17.1 %). However, the contribution of SOC from oxidation of the four kinds of volatile organic compounds (VOCs) increased slightly from 16.3 % in P1 to 21.1 % in P2.


2014 ◽  
Vol 14 (10) ◽  
pp. 5089-5110 ◽  
Author(s):  
M. Paglione ◽  
S. Saarikoski ◽  
S. Carbone ◽  
R. Hillamo ◽  
M. C. Facchini ◽  
...  

Abstract. Atmospheric organic aerosols are generally classified as primary and secondary (POA and SOA) according to their formation processes. An actual separation, however, is challenging when the timescales of emission and gas-to-particle formation overlap. The presence of SOA formation in biomass burning plumes leads to scientific questions about whether the oxidized fraction of biomass burning aerosol is rather of secondary or primary origin, as some studies would suggest, and about the chemical compositions of oxidized biomass burning POA and SOA. In this study, we apply nuclear magnetic resonance (NMR) spectroscopy to investigate the functional group composition of fresh and aged biomass burning aerosols during an intensive field campaign in the Po Valley, Italy. The campaign was part of the EUCAARI project and was held at the rural station of San Pietro Capofiume in spring 2008. Factor analysis applied to the set of NMR spectra was used to apportion the wood burning contribution and other organic carbon (OC) source contributions, including aliphatic amines. Our NMR results, referred to the polar, water-soluble fraction of OC, show that fresh wood burning particles are composed of polyols and aromatic compounds, with a sharp resemblance to wood burning POA produced in wood stoves, while aged samples are clearly depleted of alcohols and are enriched in aliphatic acids with a smaller contribution of aromatic compounds. The comparison with biomass burning organic aerosols (BBOA) determined by high-resolution aerosol mass spectrometry (HR-TOF-AMS) at the site shows only a partial overlap between NMR BB-POA and AMS BBOA, which can be explained by either the inability of BBOA to capture all BB-POA composition, especially the alcohol fraction, or the fact that BBOA account for insoluble organic compounds unmeasured by the NMR. Therefore, an unambiguous composition for biomass burning POA could not be derived from this study, with NMR analysis indicating a higher O / C ratio compared to that measured for AMS BBOA. The comparison between the two techniques substantially improves when adding factors tracing possible contributions from biomass burning SOA, showing that the operational definitions of biomass burning organic aerosols are more consistent between techniques when including more factors tracing chemical classes over a range of oxidation levels. Overall, the non-fossil total carbon fraction was 50–57%, depending on the assumptions about the 14C content of non-fossil carbon, and the fraction of organic carbon estimated to be oxidized organic aerosol (OOA) from HR-TOF-AMS measurements was 73–100% modern.


2020 ◽  
Author(s):  
Jianzhong Song ◽  
Meiju Li ◽  
Xingjun Fan ◽  
Peng'an Peng

<p>Brown carbon (BrC) is a type of light-absorbing organic compounds with a high capacity to absorb light in the low-wavelength visible and near-ultraviolet regions, which is ubiquitous in atmospheric aerosols, rainwater, and cloudwater samples. BrC can not only alter the light absorption and radiative forcing of aerosols but can also influence the formation of cloud condensation nuclei; therefore, it has a potential impact on atmospheric chemistry and climate change. Numerous studies have demonstrated that combustion processes are significant sources of atmospheric BrC, however most of these studies were focused on the emissions of biomass burning. Knowledge of primary BrC from coal combustion is still limited. In the study, smoke particles emitted from the combustion of residential coals with different geological maturity were collected in a combustion system. Then BrC fractions, including water soluble organic carbon (WSOC), water soluble humic-like substances (HULIS<sub>w</sub>), alkaline soluble organic carbon (ASOC) and methanol soluble organic carbon (MSOC) were extracted and characterized for their abundances, chemical, and light absorption properties.</p><p> </p><p>Our results showed that the abundance and light absorption of the coal combustion-derived BrC fractions were strongly dependent on the extraction methods used and the coal maturity. The abundances of MSOC fraction was significantly higher than WSOC and ASOC fractions and even higher than the sum of WSOC and ASOC, indicating that most organic compounds in smoke particles were soluble in pure methanol. The WSOC and MSOC fractions from the combustion of low maturity coal had relatively low SUVA<sub>254</sub> and MAE<sub>365</sub> values, indicated that they had relatively low levels of aromatic structures and light absorption.</p><p> </p><p>The WSOC and MSOC fractions were characterized by ultrahigh-resolution mass spectrometry. The results showed that S-containing compounds (CHOS and CHONS) are found to be the dominant components of the WSOC, whereas CHO and CHON compounds make a great contribution to the MSOC samples. Noted that a greater abundance of S-containing compounds was found in the smoke produced from coal combustion compared to biomass burning and atmospheric samples, indicated that coal combustion could be an important source of atmospheric S-containing compounds in certain areas. The findings also suggest that organic molecules with a high aromaticity index and low polarity showed stronger light absorption. In summary, our study indicated that coal combustion is a potential source of atmospheric BrC and their abundance, chemical, and light absorption were strongly dependent on the extraction methods used and the coal maturity.</p>


2020 ◽  
Vol 20 (22) ◽  
pp. 13721-13734
Author(s):  
Yujue Wang ◽  
Min Hu ◽  
Nan Xu ◽  
Yanhong Qin ◽  
Zhijun Wu ◽  
...  

Abstract. Biomass burning is one of the major sources of carbonaceous aerosols, which affects air quality, the radiation budget and human health. Field straw residue burning is a widespread type of biomass burning in Asia, while its emissions are poorly understood compared with wood burning emissions. In this study, lab-controlled straw (wheat and corn) burning experiments were designed to investigate the emission factors and light absorption properties of different biomass burning organic aerosol (BBOA) fractions, including water-soluble organic carbon (WSOC), humic-like substances (HULIS) and water-insoluble organic carbon (WISOC). The influences of biofuel moisture content and combustion efficiency on emissions are comprehensively discussed. The emission factors of PM2.5, organic carbon (OC) and elemental carbon (EC) were 9.3±3.4, 4.6±1.9 and 0.21±0.07 g kg−1 for corn burning and 8.7±5.0, 3.9±2.8 and 0.22±0.05 g kg−1 for wheat burning, generally lower than wood or forest burning emissions. Though the mass contribution of WISOC to OC (32 %–43 %) was lower than WSOC, the light absorption contribution of WISOC (57 %–84 % at 300–400 nm) surpassed WSOC due to the higher mass absorption efficiency (MAE) of WISOC. The results suggested that BBOA light absorption would be largely underestimated if only the water-soluble fractions were considered. However, the light absorption of WSOC in the near-UV range, occupying 39 %–43 % of the total extracted OC absorption at 300 nm, cannot be negligible due to the sharper increase of absorption towards shorter wavelengths compared with WISOC. HULIS were the major light absorption contributors to WSOC, due to the higher MAE of HULIS than other high-polarity WSOC components. The emission levels and light absorption of BBOA were largely influenced by the burning conditions, indicated by modified combustion efficiency (MCE) calculated by measured CO and CO2 in this study. The emission factors of PM2.5, OC, WSOC, HULIS and organic acids were enhanced under lower MCE conditions or during higher moisture straw burning experiments. Light absorption coefficients of BBOA at 365 nm were also higher under lower MCE conditions, which was mainly due to the elevated mass emission factors. Our results suggested that the influence of varied combustion efficiency on particle emissions could surpass the differences caused by different types of biofuels. Thus, the burning efficiency or conditions should be taken into consideration when estimating the influence of biomass burning. In addition, we observed that the ratios of K+/OC and Cl-/OC increased under higher MCE conditions due to the enhancement of potassium and chlorine released under higher fire temperatures during flaming combustion. This indicates that the potassium ion, as a commonly used biomass burning tracer, may lead to estimation uncertainty if the burning conditions are not considered.


Sign in / Sign up

Export Citation Format

Share Document