scholarly journals Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

2015 ◽  
Vol 15 (18) ◽  
pp. 10411-10433 ◽  
Author(s):  
P. S. Kim ◽  
D. J. Jacob ◽  
J. A. Fisher ◽  
K. Travis ◽  
K. Yu ◽  
...  

Abstract. We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer–fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5–3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42−] + [NO3−]) is only 0.5–0.7 mol mol−1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8–28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines are due to shutdowns in both biogenic emissions and UV-driven photochemistry. Surface PM2.5 shows far less summer-to-winter decrease than AOD and we attribute this in part to the offsetting effect of weaker boundary layer ventilation. The SEAC4RS aircraft data demonstrate that AODs measured from space are consistent with surface PM2.5. This implies that satellites can be used reliably to infer surface PM2.5 over monthly timescales if a good CTM representation of the aerosol vertical profile is available.

2015 ◽  
Vol 15 (13) ◽  
pp. 17651-17709
Author(s):  
P. S. Kim ◽  
D. J. Jacob ◽  
J. A. Fisher ◽  
K. Travis ◽  
K. Yu ◽  
...  

Abstract. We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the Southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 km × 25 km resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the Southeast US. GEOS-Chem simulation of sulfate requires a missing oxidant, taken here to be stabilized Criegee intermediates, but which could alternatively reflect an unaccounted for heterogeneous process. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 20 % in the cloud convective layer at 1.5–3 km, and 20 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42−] + [NO3−])) is only 0.5–0.7 mol mol−1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by organic aerosol. This would explain the long-term decline of ammonium aerosol in the Southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the Southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the Southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 21 %. The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines are due to shutdowns in both biogenic emissions and UV-driven photochemistry. Surface PM2.5 shows far less summer-to-winter decrease than AOD due to the offsetting effect of weaker boundary layer ventilation. The SEAC4RS aircraft data demonstrate that AODs measured from space are fundamentally consistent with surface PM2.5. This implies that satellites can be used reliably to infer surface PM2.5 over monthly timescales if a good CTM representation of the aerosol vertical profile is available.


2021 ◽  
Author(s):  
Emily Dowd ◽  
Christopher Wilson ◽  
Martyn Chipperfield ◽  
Manuel Gloor

<p>Methane (CH<sub>4</sub>) is the second most important atmospheric greenhouse gas after carbon dioxide. Global concentrations of CH<sub>4</sub> have been rising in the last decade and our understanding of what is driving the increase remains incomplete. Natural sources, such as wetlands, contribute to the uncertainty of the methane budget. However, anthropogenic sources, such as fossil fuels, present an opportunity to mitigate the human contribution to climate change on a relatively short timescale, since CH<sub>4</sub> has a much shorter lifetime than carbon dioxide. Therefore, it is important to know the relative contributions of these sources in different regions.</p><p>We have investigated the inter-annual variation (IAV) and rising trend of CH<sub>4</sub> concentrations using a global 3-D chemical transport model, TOMCAT. We independently tagged several regional natural and anthropogenic CH<sub>4</sub> tracers in TOMCAT to identify their contribution to the atmospheric CH<sub>4</sub> concentrations over the period 2009 – 2018. The tagged regions were selected based on the land surface types and the predominant flux sector within each region and include subcontinental regions, such as tropical South America, boreal regions and anthropogenic regions such as Europe. We used surface CH<sub>4</sub> fluxes derived from a previous TOMCAT-based atmospheric inversion study (Wilson et al., 2020). These atmospheric inversions were constrained by satellite and surface flask observations of CH<sub>4</sub>, giving optimised monthly estimates for fossil fuel and non-fossil fuel emissions on a 5.6° horizontal grid. During the study period, the total optimised CH<sub>4</sub> flux grew from 552 Tg/yr to 593 Tg/yr. This increase in emissions, particularly in the tropics, contributed to the increase in atmospheric CH<sub>4 </sub>concentrations and added to the imbalance in the CH<sub>4</sub> budget. We will use the results of the regional tagged tracers to quantify the contribution of regional methane emissions at surface observation sites, and to quantify the contributions of the natural and anthropogenic emissions from the tagged regions to the IAV and the rising methane concentrations.</p><p>Wilson, C., Chipperfield, M. P., Gloor, M., Parker, R. J., Boesch, H., McNorton, J., Gatti, L. V., Miller, J. B., Basso, L. S., and Monks, S. A.: Large and increasing methane emissions from Eastern Amazonia derived from satellite data, 2010–2018, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1136, in review, 2020.</p>


2016 ◽  
Author(s):  
Karen Yu ◽  
Daniel J. Jacob ◽  
Jenny A. Fisher ◽  
Patrick S. Kim ◽  
Eloise A. Marais ◽  
...  

Abstract. Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25° × 0.3125°, 2° × 2.5°, 4° × 5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting in part the spatial segregation of emissions; this negative correlation is captured in the model at 0.25° × 0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25° × 0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway (which has high formaldehyde yield). Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. In the lower free troposphere, model output is similarly insensitive to grid resolution, indicating that the effect on export of ozone and NOx is small. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling regional boundary layer chemistry for global applications.


2017 ◽  
Vol 17 (6) ◽  
pp. 4305-4318 ◽  
Author(s):  
Shantanu H. Jathar ◽  
Matthew Woody ◽  
Havala O. T. Pye ◽  
Kirk R. Baker ◽  
Allen L. Robinson

Abstract. Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA–SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data. Mobile sources were predicted to contribute 30–40 % of the OA in southern California (half of which was SOA), making mobile sources the single largest source contributor to OA in southern California. The remainder of the OA was attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic sources contributing to less than 5 % to the total OA. Gasoline sources were predicted to contribute about 13 times more OA than diesel sources; this difference was driven by differences in SOA production. Model predictions highlighted the need to better constrain multi-generational oxidation reactions in chemical transport models.


2021 ◽  
Author(s):  
Paul A. Makar ◽  
Craig Stroud ◽  
Ayodeji Akingunola ◽  
Junhua Zhang ◽  
Shuzhan Ren ◽  
...  

Abstract. Theoretical models of the Earth's atmosphere adhere to an underlying concept of flow driven by radiative transfer and the nature of the surface over which the flow is taking place: heat from the sun and/or anthropogenic sources are the sole sources of energy driving atmospheric constituent transport. However, another source of energy is prevalent in the human environment at the very local scale – the transfer of kinetic energy from moving vehicles to the atmosphere. We show that this source of energy, due to being co-located with combustion emissions, can influence their vertical distribution to the extent of having a significant influence on lower troposphere pollutant concentrations throughout North America. The effect of vehicle-induced turbulence on freshly emitted chemicals remains notable even when taking into account more complex urban radiative transfer-driven turbulence theories at high resolution. We have designed a parameterization to account for the at-source vertical transport of freshly emitted pollutants from mobile emissions resulting from vehicle-induced turbulence, in analogy to sub-grid-scale parameterizations for plume rise emissions from large stacks. This parameterization allows vehicle-induced turbulence to be represented at the scales inherent 3D chemical transport models, allowing its impact over large regions to be represented, without the need for the computational resources and much higher resolution of large eddy simulation models. Including this sub-grid-scale parameterization for the vertical transport of emitted pollutants due to vehicle-induced turbulence into a 3D chemical transport model of the atmosphere reduces pre-existing North American nitrogen dioxide biases by a factor of eight, and improves most model performance scores for nitrogen dioxide, particulate matter and ozone (for example, reductions in root mean square errors of 20, 9 and 0.5 percent, respectively).


2019 ◽  
Vol 19 (4) ◽  
pp. 2635-2653 ◽  
Author(s):  
Robyn N. C. Latimer ◽  
Randall V. Martin

Abstract. Aerosol mass scattering efficiency affects climate forcing calculations, atmospheric visibility, and the interpretation of satellite observations of aerosol optical depth. We evaluated the representation of aerosol mass scattering efficiency (αsp) in the GEOS-Chem chemical transport model over North America using collocated measurements of aerosol scatter and mass from IMPROVE network sites between 2000 and 2010. We found a positive bias in mass scattering efficiency given current assumptions of aerosol size distributions and particle hygroscopicity in the model. We found that overestimation of mass scattering efficiency was most significant in dry (RH <35 %) and midrange humidity (35 % < RH <65 %) conditions, with biases of 82 % and 40 %, respectively. To address these biases, we investigated assumptions surrounding the two largest contributors to fine aerosol mass, organic (OA) and secondary inorganic aerosols (SIA). Inhibiting hygroscopic growth of SIA below 35 % RH and decreasing the dry geometric mean radius, from 0.069 µm for SIA and 0.073 µm for OA to 0.058 µm for both aerosol types, significantly decreased the overall bias observed at IMPROVE sites in dry conditions from 82 % to 9 %. Implementation of a widely used alternative representation of hygroscopic growth following κ-Kohler theory for secondary inorganic (hygroscopicity parameter κ=0.61) and organic (κ=0.10) aerosols eliminated the remaining overall bias in αsp. Incorporating these changes in aerosol size and hygroscopicity into the GEOS-Chem model resulted in an increase of 16 % in simulated annual average αsp over North America, with larger increases of 25 % to 45 % in northern regions with high RH and hygroscopic aerosol fractions, and decreases in αsp up to 15 % in the southwestern U.S. where RH is low.


2011 ◽  
Vol 11 (11) ◽  
pp. 5153-5168 ◽  
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
N. Bei ◽  
...  

Abstract. Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to quantify. In this study the three-dimensional chemical transport model PMCAMx-2008 is used to investigate the temporal and geographic variability of organic aerosol in the Mexico City Metropolitan Area (MCMA) during the MILAGRO campaign that took place in the spring of 2006. The organic module of PMCAMx-2008 includes the recently developed volatility basis-set framework in which both primary and secondary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA emission inventory is modified and the POA emissions are distributed by volatility based on dilution experiments. The model predictions are compared with observations from four different types of sites, an urban (T0), a suburban (T1), a rural (T2), and an elevated site in Pico de Tres Padres (PTP). The performance of the model in reproducing organic mass concentrations in these sites is encouraging. The average predicted PM1 organic aerosol (OA) concentration in T0, T1, and T2 is 18 μg m−3, 11.7 μg m−3, and 10.5 μg m−3 respectively, while the corresponding measured values are 17.2 μg m−3, 11 μg m−3, and 9 μg m−3. The average predicted locally-emitted primary OA concentrations, 4.4 μg m−3 at T0, 1.2 μg m−3 at T1 and 1.7 μg m−3 at PTP, are in reasonably good agreement with the corresponding PMF analysis estimates based on the Aerosol Mass Spectrometer (AMS) observations of 4.5, 1.3, and 2.9 μg m−3 respectively. The model reproduces reasonably well the average oxygenated OA (OOA) levels in T0 (7.5 μg m−3 predicted versus 7.5 μg m−3 measured), in T1 (6.3 μg m−3 predicted versus 4.6 μg m−3 measured) and in PTP (6.6 μg m−3 predicted versus 5.9 μg m−3 measured). The rest of the OA mass (6.1 μg m−3 and 4.2 μg m−3 in T0 and T1 respectively) is assumed to originate from biomass burning activities and is introduced to the model as part of the boundary conditions. Inside Mexico City (at T0), the locally-produced OA is predicted to be on average 60 % locally-emitted primary (POA), 6 % semi-volatile (S-SOA) and intermediate volatile (I-SOA) organic aerosol, and 34 % traditional SOA from the oxidation of VOCs (V-SOA). The average contributions of the OA components to the locally-produced OA for the entire modelling domain are predicted to be 32 % POA, 10 % S-SOA and I-SOA, and 58 % V-SOA. The long range transport from biomass burning activities and other sources in Mexico is predicted to contribute on average almost as much as the local sources during the MILAGRO period.


2016 ◽  
Vol 16 (7) ◽  
pp. 4369-4378 ◽  
Author(s):  
Karen Yu ◽  
Daniel J. Jacob ◽  
Jenny A. Fisher ◽  
Patrick S. Kim ◽  
Eloise A. Marais ◽  
...  

Abstract. Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications.


2016 ◽  
Author(s):  
Rachel F. Silvern ◽  
Daniel J. Jacob ◽  
Patrick S. Kim ◽  
Eloise A. Marais ◽  
Jay R. Turner

Abstract. Acid-base neutralization of sulfate aerosol (S(VI) ≡ H2SO4(aq) + HSO4− + SO42−) by ammonia (NH3) has important implications for aerosol mass, hygroscopicity, and acidity. Surface network and aircraft observations across the eastern US show that sulfate aerosol is not fully neutralized even in the presence of excess ammonia, at odds with thermodynamic equilibrium models. The sulfate aerosol neutralization ratio (f = [NH4+]/2[S(VI)]) averages only 0.51 ± 0.11 mol mol−1 at sites in the Southeast and 0.78 ± 0.13 mol mol−1 in the Northeast in summer 2013, even though ammonia is in large excess as shown by the corresponding [NH4+]/2[S(VI)] ratio in wet deposition fluxes. There is in fact no site-to-site correlation between the two quantities; the aerosol neutralization ratio in the Southeast remains in a range 0.3–0.6 mol mol−1 even as the wet deposition neutralization ratio exceeds 3 mol mol−1. While the wet deposition neutralization ratio has increased by 4.6 % a−1 from 2003 to 2013 in the Southeast US, consistent with SO2 emission controls, the aerosol neutralization ratio has decreased by 1.0–3.2 % a−1. Thus the aerosol is becoming more acidic even as SO2 emissions decrease. One possible explanation is that sulfate particles are increasingly coated by organic material, retarding the uptake of ammonia. The ratio of organic aerosol (OA) to sulfate increases over the 2003–2013 period as sulfate decreases. We implement a kinetic mass transfer limitation for ammonia uptake to sulfate aerosols in the GEOS-Chem chemical transport model and find improved agreement with surface and aircraft observations of the aerosol neutralization ratio. If sulfate aerosol becomes more acidic as OA/sulfate ratios increase, then controlling SO2 emissions to decrease sulfate aerosol will not have the co-benefit of suppressing acid-catalyzed secondary organic aerosol (SOA) formation.


Sign in / Sign up

Export Citation Format

Share Document