scholarly journals Global temperature response to the major volcanic eruptions in multiple reanalysis data sets

2015 ◽  
Vol 15 (23) ◽  
pp. 13507-13518 ◽  
Author(s):  
M. Fujiwara ◽  
T. Hibino ◽  
S. K. Mehta ◽  
L. Gray ◽  
D. Mitchell ◽  
...  

Abstract. The global temperature responses to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 are investigated using nine currently available reanalysis data sets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR). Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979–2009 (for eight reanalysis data sets) and 1958–2001 (for four reanalysis data sets), by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately, and common and different responses among the older and newer reanalysis data sets are highlighted for each eruption. In response to the Mount Pinatubo eruption, most reanalysis data sets show strong warming signals (up to 2–3 K for 1-year average) in the tropical lower stratosphere and weak cooling signals (down to −1 K) in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. Comparison of the results from several different reanalysis data sets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis data sets. The consistencies and differences among different reanalysis data sets provide a measure of the confidence and uncertainty in our current understanding of the volcanic response. The results of this intercomparison study may be useful for validation of climate model responses to volcanic forcing and for assessing proposed geoengineering by stratospheric aerosol injection, as well as to link studies using only a single reanalysis data set to other studies using a different reanalysis data set.

2015 ◽  
Vol 15 (9) ◽  
pp. 13315-13346 ◽  
Author(s):  
M. Fujiwara ◽  
T. Hibino ◽  
S. K. Mehta ◽  
L. Gray ◽  
D. Mitchell ◽  
...  

Abstract. Global temperature response to the eruptions of Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991 is investigated using nine reanalysis datasets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR). Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979–2009 (for eight reanalysis datasets) and 1958–2001 (for four reanalysis datasets), by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately. In response to the Mount Pinatubo eruption, most reanalysis datasets show strong warming signals (up to 2–3 K for one-year average) in the tropical lower stratosphere and weak cooling signals (down to −1 K) in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. The response to three other smaller-scale eruptions in the 1960s and 1970s is also investigated. Comparison of the results from several different reanalysis datasets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis datasets.


2019 ◽  
Vol 19 (4) ◽  
pp. 2497-2526 ◽  
Author(s):  
Charlotta Högberg ◽  
Stefan Lossow ◽  
Farahnaz Khosrawi ◽  
Ralf Bauer ◽  
Kaley A. Walker ◽  
...  

Abstract. Within the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), we evaluated five data sets of δD(H2O) obtained from observations by Odin/SMR (Sub-Millimetre Radiometer), Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding), and SCISAT/ACE-FTS (Science Satellite/Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) using profile-to-profile and climatological comparisons. These comparisons aimed to provide a comprehensive overview of typical uncertainties in the observational database that could be considered in the future in observational and modelling studies. Our primary focus is on stratospheric altitudes, but results for the upper troposphere and lower mesosphere are also shown. There are clear quantitative differences in the measurements of the isotopic ratio, mainly with regard to comparisons between the SMR data set and both the MIPAS and ACE-FTS data sets. In the lower stratosphere, the SMR data set shows a higher depletion in δD than the MIPAS and ACE-FTS data sets. The differences maximise close to 50 hPa and exceed 200 ‰. With increasing altitude, the biases decrease. Above 4 hPa, the SMR data set shows a lower δD depletion than the MIPAS data sets, occasionally exceeding 100 ‰. Overall, the δD biases of the SMR data set are driven by HDO biases in the lower stratosphere and by H2O biases in the upper stratosphere and lower mesosphere. In between, in the middle stratosphere, the biases in δD are the result of deviations in both HDO and H2O. These biases are attributed to issues with the calibration, in particular in terms of the sideband filtering, and uncertainties in spectroscopic parameters. The MIPAS and ACE-FTS data sets agree rather well between about 100 and 10 hPa. The MIPAS data sets show less depletion below approximately 15 hPa (up to about 30 ‰), due to differences in both HDO and H2O. Higher up this behaviour is reversed, and towards the upper stratosphere the biases increase. This is driven by increasing biases in H2O, and on occasion the differences in δD exceed 80 ‰. Below 100 hPa, the differences between the MIPAS and ACE-FTS data sets are even larger. In the climatological comparisons, the MIPAS data sets continue to show less depletion in δD than the ACE-FTS data sets below 15 hPa during all seasons, with some variations in magnitude. The differences between the MIPAS and ACE-FTS data have multiple causes, such as differences in the temporal and spatial sampling (except for the profile-to-profile comparisons), cloud influence, vertical resolution, and the microwindows and spectroscopic database chosen. Differences between data sets from the same instrument are typically small in the stratosphere. Overall, if the data sets are considered together, the differences in δD among them in key areas of scientific interest (e.g. tropical and polar lower stratosphere, lower mesosphere, and upper troposphere) are too large to draw robust conclusions on atmospheric processes affecting the water vapour budget and distribution, e.g. the relative importance of different mechanisms transporting water vapour into the stratosphere.


2018 ◽  
Author(s):  
Ming Shangguan ◽  
Wuke Wang ◽  
Shuanggen Jin

Abstract. Temperature and ozone changes in the upper troposphere and lower stratosphere (UTLS) are important components and sensitive indicators of climate change. In this paper, variability and trends of temperature and ozone in the UTLS were investigated for the period 2002–2017 using the high quality, high vertical resolution GPS RO data, improved merged satellite data sets (SWOOSH and C3S) and reanalysis data sets (including the newest ERA5, MERRA2 and ERA-Interim). All three reanalyses show good agreement with the GPS RO measurements in absolute values, annual cycle as well as interannual variabilities of temperature. However, relatively large biases exist for the period 2002–2006, which reveals an evident discontinuity of temperature time series in reanalyses. Based on the multiple linear regression methods, a significant warming of 0.2–0.3 K/decade is found in most areas of the troposphere with stronger increase of 0.4–0.5 K/decade in mid-latitudes of both hemispheres. In contrast, the stratospheric temperature decreases at a rate of 0.1–0.3 K/decade except that in the lower most stratosphere (100–50 hPa) in the tropics and parts of mid-latitude in the Northern Hemisphere (NH). ERA5 shows improved quality compared with ERA-Interim and performs the best agreement with the GPS RO data for the recent trends of temperature. Similar with temperature, reanalyses ozone are also affected by the change of assimilated observations and methods. Negative trends of ozone are found in NH at 150–100 hPa while positive trends are evident in the tropical lower stratosphere. Asymmetric trends of ozone can be found for both hemispheres in the middle stratosphere, with significant ozone decrease in NH mid-latitudes and increase of ozone in the Southern Hemisphere (SH) mid-latitudes. According to model simulations, the temperature increase in the troposphere as well as ozone decrease in the NH stratosphere could be mainly connected to the increase of Sea Surface Temperature (SST) and subsequent changes of atmospheric circulations.


2019 ◽  
Vol 19 (10) ◽  
pp. 6659-6679 ◽  
Author(s):  
Ming Shangguan ◽  
Wuke Wang ◽  
Shuanggen Jin

Abstract. Temperature and ozone changes in the upper troposphere and lower stratosphere (UTLS) are important components of climate change. In this paper, variability and trends of temperature and ozone in the UTLS are investigated for the period 2002–2017 using high-quality, high vertical resolution Global Navigation Satellite System radio occultation (GNSS RO) data and improved merged satellite data sets. As part of the Stratosphere-troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP), three reanalysis data sets, including the ERA-I, MERRA2 and the recently released ERA5, are evaluated for their representation of temperature and ozone in the UTLS. The recent temperature and ozone trends are updated with a multiple linear regression (MLR) method and related to sea surface temperature (SST) changes based on model simulations made with NCAR's Whole Atmosphere Community Climate Model (WACCM). All reanalysis temperatures show good agreement with the GNSS RO measurements in both absolute value and annual cycle. Interannual variations in temperature related to Quasi-Biennial Oscillation (QBO) and the El Niño–Southern Oscillation (ENSO) processes are well represented by all reanalyses. However, evident biases can be seen in reanalyses for the linear trends of temperature since they are affected by discontinuities in assimilated observations and methods. Such biases can be corrected and the estimated trends can be significantly improved. ERA5 is significantly improved compared to ERA-I and shows the best agreement with the GNSS RO temperature. The MLR results indicate a significant warming of 0.2–0.3 K per decade in most areas of the troposphere, with a stronger increase of 0.4–0.5 K per decade at midlatitudes of both hemispheres. In contrast, the stratospheric temperature decreases at a rate of 0.1–0.3 K per decade, which is most significant in the Southern Hemisphere (SH). Positive temperature trends of 0.1–0.3 K per decade are seen in the tropical lower stratosphere (100–50 hPa). Negative trends of ozone are found in the Northern Hemisphere (NH) at 150–50 hPa, while positive trends are evident in the tropical lower stratosphere. Asymmetric trends of ozone can be found in the midlatitudes of two hemispheres in the middle stratosphere, with significant ozone decrease in the NH and increase in ozone in the SH. Large biases exist in reanalyses, and it is still challenging to do trend analysis based on reanalysis ozone data. According to single-factor-controlled model simulations with WACCM, the temperature increase in the troposphere and the ozone decrease in the NH stratosphere are mainly connected to the increase in SST and subsequent changes of atmospheric circulations. Both the increase in SSTs and the decrease in ozone in the NH contribute to the temperature decrease in the NH stratosphere. The increase in temperature in the lower stratospheric tropics may be related to an increase in ozone in that region, while warming SSTs contribute to a cooling in that area.


2020 ◽  
Author(s):  
Yann Cohen ◽  
Virginie Marécal ◽  
Béatrice Josse ◽  
Valérie Thouret

Abstract. A wide variety of observation data sets are used to assess long-term simulations provided by chemistry-climate models (CCMs) and chemistry-transport models (CTMs). However, the upper troposphere – lower stratosphere (UTLS) has hardly been assessed in the models yet. Observations performed in the framework of IAGOS (In-service Aircraft for a Global Observing System) combine the advantages of in situ airborne measurements in the UTLS with an almost global-scale sampling, a ~ 20-year monitoring period and a high frequency. If a few model assessments have been made using IAGOS database, none of them took advantage of the dense and high-resolution cruise data in their whole ensemble yet. The present study proposes a method to compare this large IAGOS data set to long-term simulations used for chemistry-climate studies. For this purpose, a new software (named Interpol-IAGOS) projects all IAGOS data on the 3D grid of the chosen model with a monthly resolution, since generally chemistry-climate models provide 3D outputs as monthly means. This provides a new IAGOS data set (IAGOS-DM) mapped at the model's grid and time resolution. As a first application, the REF-C1SD simulation generated by MOCAGE CTM in the framework of CCMI phase-I has been evaluated during the 1994–2013 period for ozone and the 2002–2013 period for carbon monoxide. This comparison is exclusively based on the grid cells sampled by IAGOS, thus the assessed model output (MOCAGE-M) is obtained by applying a corresponding mask onto the grid. First, climatologies are derived from the IAGOS-DM product. Good correlations are reported between IAGOS-DM and MOCAGE-M spatial distributions. As an attempt to analyse MOCAGE-M behaviour in the upper troposphere (UT) and the lower stratosphere (LS) separately, UT and LS data in IAGOS-DM were sorted according to potential vorticity. From this, we derived O3 and CO seasonal cycles in eight regions well sampled by IAGOS flights in the northern mid-latitudes. They are remarkably well-reproduced by the model for lower-stratospheric O3 and also good for upper-tropospheric CO. The data projection onto the model's grid is a necessary step for a more accurate assessment, as it allows to filter out biases only due to either spatial or temporal resolution. Beyond the MOCAGE REF-C1SD evaluation presented in this paper, the method could be used by CCMI models for individual assessments in the UTLS and for model intercomparisons with respect to IAGOS data set.


2017 ◽  
Author(s):  
Laura Revell ◽  
Andrea Stenke ◽  
Beiping Luo ◽  
Stefanie Kremser ◽  
Eugene Rozanov ◽  
...  

Abstract. To simulate the impacts of volcanic eruptions on the stratosphere, chemistry-climate models that do not include an online aerosol module require temporally and spatially resolved aerosol size parameters for heterogeneous chemistry and aerosol radiative properties as a function of wavelength. For phase 1 of the Chemistry-Climate Model Initiative (CCMI-1) and, later, for phase 6 of the Coupled Model Intercomparison Project (CMIP6) two such stratospheric aerosol data sets were compiled, whose functional capability and representativeness are compared here. For CCMI-1, the SAGE-4λ data set was compiled, which hinges on the measurements at four wavelengths of the SAGE (Stratospheric Aerosol and Gas Experiment) II satellite instrument and uses ground-based Lidar measurements for gap-filling immediately after the Mt. Pinatubo eruption, when the stratosphere was optically opaque for SAGE II. For CMIP6, the new SAGE-3λ data set was compiled, which excludes the least reliable SAGE II wavelength and uses CLAES (Cryogenic Limb Array Etalon Spectrometer) measurements on UARS, the Upper Atmosphere Research Satellite, for gap-filling following the Mt. Pinatubo eruption instead of ground-based Lidars. Here, we performed SOCOLv3 (Solar Climate Ozone Links version 3) chemistry-climate model simulations of the recent past (1986–2005) to investigate the impact of the Mt. Pinatubo eruption in 1991 on stratospheric temperature and ozone and how this response differs depending on which aerosol data set is applied. The use of SAGE-4λ results in heating and ozone loss being overestimated in the lower stratosphere compared to observations in the post-eruption period by approximately 3 K and 0.2 ppmv, respectively. However, less heating occurs in the model simulations based on SAGE-3λ, because the improved gap-filling procedures after the eruption lead to less aerosol loading in the tropical lower stratosphere. As a result, simulated temperature anomalies in the model simulations based on SAGE-3λ for CMIP6 are in excellent agreement with MERRA and ERA-Interim reanalyses in the post-eruption period. Less heating in the simulations with SAGE-3λ means that the rate of tropical upwelling does not strengthen as much as it does in the simulations with SAGE-4λ, which limits dynamical uplift of ozone and therefore provides more time for ozone to accumulate in tropical mid-stratospheric air. Ozone loss following the Mt. Pinatubo eruption is overestimated by 0.1 ppmv in the model simulations based on SAGE-3λ, which is a better agreement with observations than in the simulations based on SAGE-4λ. Overall, the CMIP6 stratospheric aerosol data set, SAGE-3λ, allows SOCOLv3 to more accurately simulate the post-Pinatubo eruption period.


2017 ◽  
Author(s):  
Yann Cohen ◽  
Hervé Petetin ◽  
Valérie Thouret ◽  
Virginie Marécal ◽  
Béatrice Josse ◽  
...  

Abstract. In situ measurements in the upper troposphere – lower stratosphere (UTLS) are performed in the framework of the European research infrastructure IAGOS (In-service Aircraft for a Global Observing System) for ozone since 1994 and for carbon monoxide since 2002. The flight tracks cover a wide range of longitudes in the northern extratropics, extending from the North American western coast (125° W) to the eastern Asian coast (135° E), and more recently over the northern Pacific ocean. Different tropical regions are also sampled frequently, such as the Brazilian coast, central and southern Africa, southeastern Asia and the western Maritime Continent. As a result, a new set of climatologies for O3 (Aug. 1994–Dec. 2013) and CO (Dec. 2001–Dec. 2013) in the upper troposphere (UT), tropopause layer and lower stratosphere (LS) are made available, including quasi-global gridded horizontal distributions, and seasonal cycles over eight well sampled regions of interest in the northern extratropics. The seasonal cycles generally show a summertime maximum in O3 and a springtime maximum in CO in the UT, in contrast with the systematic springtime maximum in O3 and the quasi-absence of seasonal cycle of CO in the LS. This study highlights some regional variabilities in the UT notably (i) a west-east difference of O3 in boreal summer with up to 15 ppb more O3 over central Russia compared with northeast America, (ii) a systematic west-east gradient of CO from 60° E to 140° E (especially noticeable in spring and summer with about 5 ppb by 10 degrees longitude), (iii) a broad spring/summer maximum of CO over North East Asia, and (iv) a spring maximum of O3 over Western North America. Thanks to almost 20 years of O3 and 12 years of CO measurements, the IAGOS database is a unique data set to derive trends in the UTLS. Trends in O3 in the UT are positive and statistically significant in most regions, ranging from +0.25 to +0.45 ppb yr−1, characterized by the significant increase of the lowest values of the distribution. No significant trends of O3 are detected in the LS. Trends of CO in the UT, tropopause and LS are all negative and statistically significant. The estimated slopes range from −1.37 to −0.59 ppb yr−1 , with a nearly homogeneous decrease of the lowest values of the monthly distribution (fifth percentile) contrasting with the high inter-regional variability of the highest values (95th percentile).


2013 ◽  
Vol 13 (22) ◽  
pp. 11221-11234 ◽  
Author(s):  
F. Arfeuille ◽  
B. P. Luo ◽  
P. Heckendorn ◽  
D. Weisenstein ◽  
J. X. Sheng ◽  
...  

Abstract. In terms of atmospheric impact, the volcanic eruption of Mt. Pinatubo (1991) is the best characterized large eruption on record. We investigate here the model-derived stratospheric warming following the Pinatubo eruption as derived from SAGE II extinction data including recent improvements in the processing algorithm. This method, termed SAGE_4λ, makes use of the four wavelengths (385, 452, 525 and 1024 nm) of the SAGE II data when available, and uses a data-filling procedure in the opacity-induced "gap" regions. Using SAGE_4λ, we derived aerosol size distributions that properly reproduce extinction coefficients also at much longer wavelengths. This provides a good basis for calculating the absorption of terrestrial infrared radiation and the resulting stratospheric heating. However, we also show that the use of this data set in a global chemistry–climate model (CCM) still leads to stronger aerosol-induced stratospheric heating than observed, with temperatures partly even higher than the already too high values found by many models in recent general circulation model (GCM) and CCM intercomparisons. This suggests that the overestimation of the stratospheric warming after the Pinatubo eruption may not be ascribed to an insufficient observational database but instead to using outdated data sets, to deficiencies in the implementation of the forcing data, or to radiative or dynamical model artifacts. Conversely, the SAGE_4λ approach reduces the infrared absorption in the tropical tropopause region, resulting in a significantly better agreement with the post-volcanic temperature record at these altitudes.


2016 ◽  
Vol 9 (9) ◽  
pp. 4355-4373 ◽  
Author(s):  
Swagata Payra ◽  
Philippe Ricaud ◽  
Rachid Abida ◽  
Laaziz El Amraoui ◽  
Jean-Luc Attié ◽  
...  

Abstract. The present analysis deals with one of the most debated aspects of the studies on the upper troposphere/lower stratosphere (UTLS), namely the budget of water vapour (H2O) at the tropical tropopause. Within the French project “Multiscale water budget in the upper troposphere and lower stratosphere in the TROpics” (TRO-pico), a global-scale analysis has been set up based on space-borne observations, models and assimilation techniques. The MOCAGE-VALENTINA assimilation tool has been used to assimilate the Aura Microwave Limb Sounder (MLS) version 3.3 H2O measurements within the 316–5 hPa range from August 2011 to March 2013 with an assimilation window of 1 h. Diagnostics based on observations minus analysis and forecast are developed to assess the quality of the assimilated H2O fields. Comparison with an independent source of H2O measurements in the UTLS based on the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations and with meteorological ARPEGE analyses is also shown. Sensitivity studies of the analysed fields have been performed by (1) considering periods when no MLS measurements are available and (2) using H2O data from another MLS version (4.2). The studies have been performed within three different spaces in time and space coincidences with MLS (hereafter referred to as MLS space) and MIPAS (MIPAS space) observations and with the model (model space) outputs and at three different levels: 121 hPa (upper troposphere), 100 hPa (tropopause) and 68 hPa (lower stratosphere) in January and February 2012. In the MLS space, the analyses behave consistently with the MLS observations from the upper troposphere to the lower stratosphere. In the model space, the analyses are wetter than the reference atmosphere as represented by ARPEGE and MLS in the upper troposphere (121 hPa) and around the tropopause (100 hPa), but are consistent with MLS and MIPAS in the lower stratosphere (68 hPa). In the MIPAS space, the sensitivity and the vertical resolution of the MIPAS data set at 121 and 100 hPa prevent assessment of the behaviour of the analyses at 121 and 100 hPa, particularly over intense convective areas as the South American, the African and the Maritime continents but, in the lower stratosphere (68 hPa), the analyses are very consistent with MIPAS. Sensitivity studies show the improvement on the H2O analyses in the tropical UTLS when assimilating space-borne measurements of better quality, particularly over the convective areas.


2019 ◽  
Author(s):  
Masatomo Fujiwara ◽  
Patrick Martineau ◽  
Jonathon S. Wright

Abstract. The global response of air temperature at 2 metre above the surface to the eruptions of Mount Agung in March 1963, El Chichón in April 1982, and Mount Pinatubo in June 1991 is investigated using 11 global atmospheric reanalysis data sets (JRA-55, JRA-25, MERRA-2, MERRA, ERA-Interim, ERA-40, CFSR, NCEP-NCAR R-1, 20CR version 2c, ERA-20C, and CERA-20C). Multiple linear regression (MLR) is applied to the monthly mean time series of temperature for two periods, 1980–2010 (for 10 reanalyses) and 1958–2001 (for six reanalyses), by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation (QBO), solar cycle, tropical sea surface temperature (SST) variations in the Pacific, Indian, and Atlantic Oceans, and Arctic SST variations. Empirical orthogonal function (EOF) analysis is applied to these climatic indices to obtain a set of orthogonal indices to be used for the MLR. The residuals of the MLR are used to define the volcanic signals for the three eruptions separately. First, latitudinally averaged time series of the residuals are investigated and compared with the results from previous studies. Then, the geographical distribution of the response during the peak cooling period after each eruption is investigated. In general, different reanalyses show similar geographical patterns of the response, but with the largest differences in the polar regions. The Pinatubo response shows largest average cooling in the 60° N–60° S region among the three eruptions, with a peak cooling of 0.10–0.15 K. The El Chichón response shows slightly larger cooling in the NH than in the Southern Hemisphere (SH), while the Agung response shows larger cooling in the SH. These hemispheric differences are consistent with the distribution of stratospheric aerosol optical depth after these eruptions; however, the peak cooling after these two eruptions is comparable in magnitude to unexplained cooling events in other periods without volcanic influence. Other methods in which the MLR model is used with different sets of indices are also tested, and it is found that careful treatment of tropical SST variability is necessary to evaluate the surface response to volcanic eruptions in observations and reanalyses.


Sign in / Sign up

Export Citation Format

Share Document