scholarly journals Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF<sub>3</sub> and CF<sub>3</sub>CF<sub>2</sub>Cl (CFC-115)

2016 ◽  
Vol 16 (17) ◽  
pp. 11451-11463 ◽  
Author(s):  
Anna Totterdill ◽  
Tamás Kovács ◽  
Wuhu Feng ◽  
Sandip Dhomse ◽  
Christopher J. Smith ◽  
...  

Abstract. Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs), which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry–climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

2016 ◽  
Author(s):  
Anna Totterdill ◽  
Tamás Kovács ◽  
Wuhu Feng ◽  
Sandip Dhomse ◽  
Christopher J. Smith ◽  
...  

Abstract. Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs) which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross-sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are in good agreement with previous measurements, whereas the resulting radiative forcings and efficiencies are, on average, around 10 % larger. A whole atmosphere chemistry-climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (616 ± 34) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 14 600, 19 400 and 21 400 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6120, 8060 and 8630 over 20, 100 and 500 years, respectively.


2015 ◽  
Vol 112 (43) ◽  
pp. E5777-E5786 ◽  
Author(s):  
Sybren Drijfhout ◽  
Sebastian Bathiany ◽  
Claudie Beaulieu ◽  
Victor Brovkin ◽  
Martin Claussen ◽  
...  

Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2°, a threshold sometimes presented as a safe limit. Although most models predict one or more such events, any specific occurrence typically appears in only a few models. We find no compelling evidence for a general relation between the overall number of abrupt shifts and the level of global warming. However, we do note that abrupt changes in ocean circulation occur more often for moderate warming (less than 2°), whereas over land they occur more often for warming larger than 2°. Using a basic proportion test, however, we find that the number of abrupt shifts identified in Representative Concentration Pathway (RCP) 8.5 scenarios is significantly larger than in other scenarios of lower radiative forcing. This suggests the potential for a gradual trend of destabilization of the climate with respect to such shifts, due to increasing global mean temperature change.


2015 ◽  
Vol 11 (8) ◽  
pp. 1097-1105 ◽  
Author(s):  
R. V. Kochanov ◽  
I. E. Gordon ◽  
L. S. Rothman ◽  
S. W. Sharpe ◽  
T. J. Johnson ◽  
...  

Abstract. In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm−1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.


2017 ◽  
Author(s):  
Antara Banerjee ◽  
Amanda C. Maycock ◽  
John A. Pyle

Abstract. The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model. Projected measures to improve air-quality through reductions in tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of −0.09 Wm−2. This is opposed by a positive ozone RF of 0.07 Wm−2 due to future decreases in ODSs, which is mainly driven by an increase in tropospheric ozone through stratosphere-to-troposphere exchange. An increase in methane abundance by more than a factor of two (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.19 Wm−2, which would greatly outweigh the climate benefits of tropospheric non-methane ozone precursor reductions. A third of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gas concentrations, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.06 Wm−2) for RCP4.5 and a negative RF (−0.07 Wm−2) for the RCP8.5 scenario. This dependence arises from differences in the contribution to RF from stratospheric ozone changes.


2021 ◽  
Author(s):  
Tom M. L. Wigley

Abstract This paper provides an assessment of Article 4.1 of the Paris Agreement on climate; the main goal of which is to provide guidance on how “to achieve the long-term temperature goal set out in Article 2”. Paraphrasing, Article 4.1 says that, to achieve this end, we should decrease greenhouse gas (GHG) emissions so that net anthropogenic GHG emissions fall to zero in the second half of this century. To aggregate net GHG emissions, 100-year Global Warming Potentials (GWP-100) are commonly used to convert non-CO2 emissions to equivalent CO2 emissions. As a test case using methane, temperature projections using GWP-100 scaling are shown to be seriously in error. This throws doubt on the use of GWP-100 scaling to estimate net GHG emissions. An alternative method to determine the net-zero point for GHG emissions based on radiative forcing is derived. This shows that the net-zero point needs to be reached as early as 2036, much sooner than in the Article 4.1 window. Other scientific flaws in Article 4.1 that further undermine its purpose to guide efforts to achieve the Article 2 temperature targets are discussed.


2009 ◽  
Vol 9 (6) ◽  
pp. 25633-25661 ◽  
Author(s):  
U. Lohmann ◽  
L. Rotstayn ◽  
T. Storelvmo ◽  
A. Jones ◽  
S. Menon ◽  
...  

Abstract. Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical properties, a quantification of the aerosol forcings in the traditional way is difficult to properly define. Here we argue that fast feedbacks should be included because they act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Based on our results, we recommend RFP as a valid option to compare different forcing agents, and to compare the effects of particular forcing agents in different models.


Sign in / Sign up

Export Citation Format

Share Document