scholarly journals Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models

2015 ◽  
Vol 112 (43) ◽  
pp. E5777-E5786 ◽  
Author(s):  
Sybren Drijfhout ◽  
Sebastian Bathiany ◽  
Claudie Beaulieu ◽  
Victor Brovkin ◽  
Martin Claussen ◽  
...  

Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2°, a threshold sometimes presented as a safe limit. Although most models predict one or more such events, any specific occurrence typically appears in only a few models. We find no compelling evidence for a general relation between the overall number of abrupt shifts and the level of global warming. However, we do note that abrupt changes in ocean circulation occur more often for moderate warming (less than 2°), whereas over land they occur more often for warming larger than 2°. Using a basic proportion test, however, we find that the number of abrupt shifts identified in Representative Concentration Pathway (RCP) 8.5 scenarios is significantly larger than in other scenarios of lower radiative forcing. This suggests the potential for a gradual trend of destabilization of the climate with respect to such shifts, due to increasing global mean temperature change.

2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


2020 ◽  
Vol 33 (7) ◽  
pp. 2871-2890 ◽  
Author(s):  
Sang-Ik Shin ◽  
Michael A. Alexander

AbstractProjected climate changes along the U.S. East and Gulf Coasts were examined using the eddy-resolving Regional Ocean Modeling System (ROMS). First, a control (CTRL) ROMS simulation was performed using boundary conditions derived from observations. Then climate change signals, obtained as mean seasonal cycle differences between the recent past (1976–2005) and future (2070–99) periods in a coupled global climate model under the RCP8.5 greenhouse gas trajectory, were added to the initial and boundary conditions of the CTRL in a second (RCP85) ROMS simulation. The differences between the RCP85 and CTRL simulations were used to investigate the regional effects of climate change. Relative to the coarse-resolution coupled climate model, the downscaled projection shows that SST changes become more pronounced near the U.S. East Coast, and the Gulf Stream is further reduced in speed and shifted southward. Moreover, the downscaled projection shows enhanced warming of ocean bottom temperatures along the U.S. East and Gulf Coasts, particularly in the Gulf of Maine and the Gulf of Saint Lawrence. The enhanced warming was related to an improved representation of the ocean circulation, including topographically trapped coastal ocean currents and slope water intrusion through the Northeast Channel into the Gulf of Maine. In response to increased radiative forcing, much warmer than present-day Labrador Subarctic Slope Waters entered the Gulf of Maine through the Northeast Channel, warming the deeper portions of the gulf by more than 4°C.


2010 ◽  
Vol 23 (23) ◽  
pp. 6143-6152 ◽  
Author(s):  
Adam A. Scaife ◽  
Tim Woollings ◽  
Jeff Knight ◽  
Gill Martin ◽  
Tim Hinton

Abstract Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.


Author(s):  
Harry L. Bryden ◽  
Carol Robinson ◽  
Gwyn Griffiths

Within the context of UK marine science, we project a strategy for ocean circulation research over the next 20 years. We recommend a focus on three types of research: (i) sustained observations of the varying and evolving ocean circulation, (ii) careful analysis and interpretation of the observed climate changes for comparison with climate model projections, and (iii) the design and execution of focused field experiments to understand ocean processes that are not resolved in coupled climate models so as to be able to embed these processes realistically in the models. Within UK-sustained observations, we emphasize smart, cost-effective design of the observational network to extract maximum information from limited field resources. We encourage the incorporation of new sensors and new energy sources within the operational environment of UK-sustained observational programmes to bridge the gap that normally separates laboratory prototype from operational instrument. For interpreting the climate-change records obtained through a variety of national and international sustained observational programmes, creative and dedicated UK scientists should lead efforts to extract the meaningful signals and patterns of climate change and to interpret them so as to project future changes. For the process studies, individual scientists will need to work together in team environments to combine observational and process modelling results into effective improvements in the coupled climate models that will lead to more accurate climate predictions.


2020 ◽  
Author(s):  
Akash Koppa ◽  
Thomas Remke ◽  
Stephan Thober ◽  
Oldrich Rakovec ◽  
Sebastian Müller ◽  
...  

<p>Headwater systems are a major source of water, sediments, and nutrients (including nitrogen and carbon di-oxide) for downstream aquatic, riparian, and inland ecosystems. As precipitation changes are expected to exhibit considerable spatial variability in the future, we hypothesize that headwater contribution to major rivers will also change significantly. Quantifying these changes is essential for developing effective adaptation and mitigation strategies against climate change. However, the lack of hydrologic projections at high resolutions over large domains have hindered attempts to quantify climate change impacts on headwater systems.</p><p>Here, we overcome this challenge by developing an ensemble of hydrologic projections at an unprecedented resolution (1km) for Germany. These high resolution projections are developed within the framework of the Helmholtz Climate Initiative (https://www.helmholtz.de/en/current-topics/the-initiative/climate-research/). Our modeling chain consists of the following four components:</p><p><strong>Climate Modeling:</strong> We statistically downscale and bias-adjust climate change scenarios from three representative concentration pathway (RCP) scenarios derived from the EURO-CORDEX ensemble - 2.6, 4.5, and 8.5 to a horizontal resolution of 1km over Germany (i.e, a total of 75 ensemble members). The EURO-CORDEX ensemble is generated by dynamically downscaling CMIP-5 general circulation models (GCM) using regional climate models (RCMs). <strong>Hydrologic Modeling:</strong> To account for model structure uncertainty, the climate model projections are used as forcings for three spatially distributed hydrologic models - a) the mesocale Hydrologic model (mHM), b) Noah-MP, and c) HTESSEL. The outputs that will be generated in the study are soil moisture, evapotranspiration, snow water equivalent, and runoff. <strong>Streamflow Routing:</strong> To minimize uncertainty from river routing schemes, we use the multiscale routing model (mRM v1.0) to route runoff from all the three models. <strong>River Temperature Modeling:</strong> A novel river temperature model is used to quantify the changes in river temperature due to anthropogenic warming.</p><p>The 225-member ensemble streamflow outputs (75 climate model members and 3 hydrologic models) are used to quantify the changes in the contribution of headwater watersheds to all the major rivers in Germany. Finally, we analyze changes in soil moisture, snow melt, and river temperature and their implications for headwater contributions. Previously, a high-resolution (5km) multi-model ensemble for climate change projections has been created within the EDgE project<strong><sup>1,2,3,4</sup></strong>. The newly created projections in this project will be compared against those created in the EDgE project.  The ensemble used in this project will profit from the higher resolution of the regional climate models that provide a more detailed land orography.</p><p><strong>References</strong></p><p><strong>[1] </strong>Marx,<em> A. et al. (2018). Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 C. Hydrology and Earth System Sciences, 22(2), 1017-1032.</em></p><p><strong>[2]</strong><em> Samaniego, L. et al. (2019). Hydrological forecasts and projections for improved decision-making in the water sector in Europe. Bulletin of the American Meteorological Society.</em></p><p><strong>[3]</strong> Samaniego,<em> L. and Thober, S., et al. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8(5), 421.</em></p><p><strong>[4]</strong> Thober,<em> S. et al. (2018). Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environmental Research Letters, 13(1), 014003.</em></p><p> </p><p> </p><p> </p>


2016 ◽  
Vol 16 (17) ◽  
pp. 11451-11463 ◽  
Author(s):  
Anna Totterdill ◽  
Tamás Kovács ◽  
Wuhu Feng ◽  
Sandip Dhomse ◽  
Christopher J. Smith ◽  
...  

Abstract. Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs), which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry–climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.


Author(s):  
Richard A. Betts ◽  
Matthew Collins ◽  
Deborah L. Hemming ◽  
Chris D. Jones ◽  
Jason A. Lowe ◽  
...  

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate–carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with ‘FI’ standing for ‘fossil intensive’. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC’s ‘likely range’.


2017 ◽  
Vol 10 (10) ◽  
pp. 3715-3743 ◽  
Author(s):  
Paul J. Valdes ◽  
Edward Armstrong ◽  
Marcus P. S. Badger ◽  
Catherine D. Bradshaw ◽  
Fran Bragg ◽  
...  

Abstract. Understanding natural and anthropogenic climate change processes involves using computational models that represent the main components of the Earth system: the atmosphere, ocean, sea ice, and land surface. These models have become increasingly computationally expensive as resolution is increased and more complex process representations are included. However, to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty, it is often required to use either or both ensemble approaches and very long integrations. For this reason, more computationally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models based around the HadCM3 coupled general circulation model. This model was developed at the UK Met Office and has been heavily used during the last 15 years for a range of future (and past) climate change studies, but has now been largely superseded for many scientific studies by more recently developed models. However, it continues to be extensively used by various institutions, including the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment) research group at the University of Bristol, who have made modest adaptations to the base HadCM3 model over time. These adaptations mean that the original documentation is not entirely representative, and several other relatively undocumented configurations are in use. We therefore describe the key features of a number of configurations of the HadCM3 climate model family, which together make up HadCM3@Bristol version 1.0. In order to differentiate variants that have undergone development at BRIDGE, we have introduced the letter B into the model nomenclature. We include descriptions of the atmosphere-only model (HadAM3B), the coupled model with a low-resolution ocean (HadCM3BL), the high-resolution atmosphere-only model (HadAM3BH), and the regional model (HadRM3B). These also include three versions of the land surface scheme. By comparing with observational datasets, we show that these models produce a good representation of many aspects of the climate system, including the land and sea surface temperatures, precipitation, ocean circulation, and vegetation. This evaluation, combined with the relatively fast computational speed (up to 1000 times faster than some CMIP6 models), motivates continued development and scientific use of the HadCM3B family of coupled climate models, predominantly for quantifying uncertainty and for long multi-millennial-scale simulations.


2018 ◽  
Vol 31 (14) ◽  
pp. 5609-5628 ◽  
Author(s):  
Baoqiang Xiang ◽  
Ming Zhao ◽  
Yi Ming ◽  
Weidong Yu ◽  
Sarah M. Kang

Abstract Most current climate models suffer from pronounced cloud and radiation biases in the Southern Ocean (SO) and in the tropics. Using one GFDL climate model, this study investigates the migration of the intertropical convergence zone (ITCZ) with prescribed top-of-the-atmosphere (TOA) shortwave radiative heating in the SO (50°–80°S) versus the southern tropics (ST; 0°–20°S). Results demonstrate that the ITCZ position response to the ST forcing is twice as strong as the SO forcing, which is primarily driven by the contrasting sea surface temperature (SST) gradient over the tropics; however, the mechanism for the formation of the SST pattern remains elusive. Energy budget analysis reveals that the conventional energetic constraint framework is inadequate in explaining the ITCZ shift in these two perturbed experiments. For both cases, the anomalous Hadley circulation does not contribute to transport the imposed energy from the Southern Hemisphere to the Northern Hemisphere, given a positive mean gross moist stability in the equatorial region. Changes in the cross-equatorial atmospheric energy are primarily transported by atmospheric transient eddies when the anomalous ITCZ shift is most pronounced during December–May. The partitioning of energy transport between the atmosphere and ocean shows latitudinal dependence: the atmosphere and ocean play an overall equivalent role in transporting the imposed energy for the extratropical SO forcing, while for the ST forcing, the imposed energy is nearly completely transported by the atmosphere. This contrast originates from the different ocean heat uptake and also the different meridional scale of the anomalous ocean circulation.


2018 ◽  
Vol 11 (6) ◽  
pp. 2273-2297 ◽  
Author(s):  
Christopher J. Smith ◽  
Piers M. Forster ◽  
Myles Allen ◽  
Nicholas Leach ◽  
Richard J. Millar ◽  
...  

Abstract. Simple climate models can be valuable if they are able to replicate aspects of complex fully coupled earth system models. Larger ensembles can be produced, enabling a probabilistic view of future climate change. A simple emissions-based climate model, FAIR, is presented, which calculates atmospheric concentrations of greenhouse gases and effective radiative forcing (ERF) from greenhouse gases, aerosols, ozone and other agents. Model runs are constrained to observed temperature change from 1880 to 2016 and produce a range of future projections under the Representative Concentration Pathway (RCP) scenarios. The constrained estimates of equilibrium climate sensitivity (ECS), transient climate response (TCR) and transient climate response to cumulative CO2 emissions (TCRE) are 2.86 (2.01 to 4.22) K, 1.53 (1.05 to 2.41) K and 1.40 (0.96 to 2.23) K (1000 GtC)−1 (median and 5–95 % credible intervals). These are in good agreement with the likely Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) range, noting that AR5 estimates were derived from a combination of climate models, observations and expert judgement. The ranges of future projections of temperature and ranges of estimates of ECS, TCR and TCRE are somewhat sensitive to the prior distributions of ECS∕TCR parameters but less sensitive to the ERF from a doubling of CO2 or the observational temperature dataset used to constrain the ensemble. Taking these sensitivities into account, there is no evidence to suggest that the median and credible range of observationally constrained TCR or ECS differ from climate model-derived estimates. The range of temperature projections under RCP8.5 for 2081–2100 in the constrained FAIR model ensemble is lower than the emissions-based estimate reported in AR5 by half a degree, owing to differences in forcing assumptions and ECS∕TCR distributions.


Sign in / Sign up

Export Citation Format

Share Document