scholarly journals Precipitation regime and stable isotopes at Dome Fuji, East Antarctica

2016 ◽  
Vol 16 (11) ◽  
pp. 6883-6900 ◽  
Author(s):  
Anna Dittmann ◽  
Elisabeth Schlosser ◽  
Valérie Masson-Delmotte ◽  
Jordan G. Powers ◽  
Kevin W. Manning ◽  
...  

Abstract. A unique set of 1-year precipitation and stable water isotope measurements from the Japanese Antarctic station, Dome Fuji, has been used to study the impact of the synoptic situation and the precipitation origin on the isotopic composition of precipitation on the Antarctic Plateau. The Antarctic Mesoscale Prediction System (AMPS) archive data are used to analyse the synoptic situations that cause precipitation. These situations are investigated and divided into five categories. The most common weather situation during a precipitation event is an upper-level ridge that extends onto the Antarctic Plateau and causes strong northerly advection from the ocean. Most precipitation events are associated with an increase in temperature and wind speed, and a local maximum of δ18O. During the measurement period, 21 synoptically caused precipitation events caused 60 % of the total annual precipitation, whereas the remaining 40 % were predominantly attributed to diamond dust. By combining the synoptic analyses with 5-day back-trajectories, the moisture source regions for precipitation events were estimated. An average source region around a latitude of 55° S was found. The atmospheric conditions in the source region were used as initial conditions for running a Rayleigh-type isotopic model in order to reproduce the measured isotopic composition of fresh snow and to investigate the influence of the precipitation source region on the isotope ratios. The model represents the measured annual cycle of δ18O and the second-order isotopic parameter deuterium excess reasonably well, but yields on average too little fractionation along the transport/cooling path. While simulations with an isotopic general circulation model (GCM) (ECHAM5-wiso) for Dome Fuji are on average closer to the observations, this model cannot reproduce the annual cycle of deuterium excess. In the event-based analysis, no evidence of a correlation of the measured deuterium excess with the latitude of the moisture source region or the corresponding conditions was identified. Contrary to the assumption used for decades in ice core studies, a more northerly moisture source does not necessarily mean a larger temperature difference between source area and deposition site, thus a more depleted precipitation in heavy isotopes with a higher deuterium excess.

2016 ◽  
Author(s):  
A. Dittmann ◽  
E. Schlosser ◽  
V. Masson-Delmotte ◽  
J. G. Powers ◽  
K. W. Manning ◽  
...  

Abstract. A unique set of one-year precipitation and stable water isotope measurements from the Japanese Antarctic station Dome Fuji has been used to study the impact of the synoptic situation and the precipitation origin on the isotopic composition of precipitation on the Antarctic Plateau. The Antarctic Mesoscale Prediction System (AMPS) archive data are used to analyse the synoptic situations that cause precipitation. These situations are investigated and divided into five categories. The most common weather situation during a precipitation event is an upper-level ridge that extends onto the Antarctic Plateau and causes strong northerly advection from the ocean. Most precipitation events are associated with an increase in temperature and wind speed and a local maximum of δ18O. During the measurement period, 21 synoptically-caused precipitation events caused 60 % of the total annual precipitation, whereas the remaining 40 % were predominantly attributed to diamond dust. By combining the synoptic analyses with 5-day back-trajectories, the moisture source regions for precipitation events were estimated. An average source region around a latitude of 55 °S was found. The atmospheric conditions in the source region were used as initial conditions for running a Rayleigh-type isotopic model in order to reproduce the measured isotopic composition of fresh snow and to investigate the influence of the precipitation source region on the isotope ratios. The model represents the measured annual cycle of δ18O and the second-order isotopic parameter deuterium excess reasonably well, but yields, on average, too little fractionation along the transport/cooling path. While simulations with an isotopic general circulation model (GCM) (ECHAM5-wiso) for Dome Fuji are on average closer to the observations, this model cannot reproduce the annual cycle of deuterium excess. In the event-based analysis, no evidence for a correlation of the measured deuterium excess with the latitude of the moisture source region or the corresponding conditions there was identified. Contrary to the assumption used for decades in ice core studies, a more northern moisture source does not necessarily mean a larger temperature difference between source area and deposition site and thus precipitation that is more depleted in heavy isotopes and has a higher deuterium excess.


2017 ◽  
Vol 17 (7) ◽  
pp. 4627-4639 ◽  
Author(s):  
Annie L. Putman ◽  
Xiahong Feng ◽  
Leslie J. Sonder ◽  
Eric S. Posmentier

Abstract. In this study, precipitation isotopic variations at Barrow, AK, USA, are linked to conditions at the moisture source region, along the transport path, and at the precipitation site. Seventy precipitation events between January 2009 and March 2013 were analyzed for δ2H and deuterium excess. For each precipitation event, vapor source regions were identified with the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) air parcel tracking program in back-cast mode. The results show that the vapor source region migrated annually, with the most distal (proximal) and southerly (northerly) vapor source regions occurring during the winter (summer). This may be related to equatorial expansion and poleward contraction of the polar circulation cell and the extent of Arctic sea ice cover. Annual cycles of vapor source region latitude and δ2H in precipitation were in phase; depleted (enriched) δ2H values were associated with winter (summer) and distal (proximal) vapor source regions. Precipitation δ2H responded to variation in vapor source region as reflected by significant correlations between δ2H with the following three parameters: (1) total cooling between lifted condensation level (LCL) and precipitating cloud at Barrow, ΔTcool, (2) meteorological conditions at the evaporation site quantified by 2 m dew point, Td, and (3) whether the vapor transport path crossed the Brooks and/or Alaskan ranges, expressed as a Boolean variable, mtn. These three variables explained 54 % of the variance (p<0. 001) in precipitation δ2H with a sensitivity of −3.51 ± 0.55 ‰ °C−1 (p<0. 001) to ΔTcool, 3.23 ± 0.83 ‰ °C−1 (p<0. 001) to Td, and −32.11 ± 11.04 ‰ (p = 0. 0049) depletion when mtn is true. The magnitude of each effect on isotopic composition also varied with vapor source region proximity. For storms with proximal vapor source regions (where ΔTcool <7 °C), ΔTcool explained 3 % of the variance in δ2H, Td alone accounted for 43 %, while mtn explained 2 %. For storms with distal vapor sources (ΔTcool > 7°C), ΔTcool explained 22 %, Td explained only 1 %, and mtn explained 18 %. The deuterium excess annual cycle lagged by 2–3 months during the δ2H cycle, so the direct correlation between the two variables is weak. Vapor source region relative humidity with respect to the sea surface temperature, hss, explained 34 % of variance in deuterium excess, (−0.395 ± 0.067 ‰ %−1, p<0. 001). The patterns in our data suggest that on an annual scale, isotopic ratios of precipitation at Barrow may respond to changes in the southerly extent of the polar circulation cell, a relationship that may be applicable to interpretation of long-term climate change records like ice cores.


2015 ◽  
Vol 15 (20) ◽  
pp. 12079-12113 ◽  
Author(s):  
J. Erbland ◽  
J. Savarino ◽  
S. Morin ◽  
J. L. France ◽  
M. M. Frey ◽  
...  

Abstract. Unraveling the modern budget of reactive nitrogen on the Antarctic Plateau is critical for the interpretation of ice-core records of nitrate. This requires accounting for nitrate recycling processes occurring in near-surface snow and the overlying atmospheric boundary layer. Not only concentration measurements but also isotopic ratios of nitrogen and oxygen in nitrate provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modeling is required to test hypotheses in a quantitative manner. Here we introduce the model TRANSITS (TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow), a novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air–snow interface on the East Antarctic Plateau, in terms of concentrations (mass fraction) and nitrogen (δ15N) and oxygen isotopic composition (17O excess, Δ17O) in nitrate. At the air–snow interface at Dome C (DC; 75° 06' S, 123° 19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow, including the observed extraordinary high positive values (around +300 ‰) below 2 cm. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air–snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by several per mill. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2 as well as by our lack of understanding of the NOx chemistry at Dome C. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15&amp;varepsilon;app, 17Eapp) to the snow accumulation rate. Building on this development, we propose a framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions and δ15N in the nitrate archived in an ice core may be used to derive information about past variations in the total ozone column and/or the primary inputs of nitrate above Antarctica as well as in nitrate trapping efficiency (defined as the ratio between the archived nitrate flux and the primary nitrate input flux). The Δ17O of nitrate could then be corrected from the impact of cage recombination effects associated with the photolysis of nitrate in snow. Past changes in the relative contributions of the Δ17O in the primary inputs of nitrate and the Δ17O in the locally cycled NO2 and that inherited from the additional O atom in the oxidation of NO2 could then be determined. Therefore, information about the past variations in the local and long-range processes operating on reactive nitrogen species could be obtained from ice cores collected in low-accumulation regions such as the Antarctic Plateau.


2021 ◽  
Author(s):  
Alexandre Tuel ◽  
Bettina Schaefli ◽  
Jakob Zscheischler ◽  
Olivia Martius

Abstract. River discharge is impacted by the sub-seasonal (weekly to monthly) temporal structure of precipitation. One example is the successive occurrence of extreme precipitation events over sub-seasonal timescales, referred to as temporal clustering. Its potential effects on discharge have received little attention. Here, we address this question by analysing discharge observations following extreme precipitation events either clustered in time or occurring in isolation. We rely on two sets of precipitation and discharge data, one centered on Switzerland and the other over Europe. We identify "clustered" extreme precipitation events based on the previous occurrence of another extreme precipitation within a given time window. We find that clustered events are generally followed by a more prolonged discharge response with a larger amplitude. The probability of exceeding the 95th discharge percentile in the five days following an extreme precipitation event is in particular up to twice as high for situations where another extreme precipitation event occurred in the preceding week compared to isolated extreme precipitation events. The influence of temporal clustering decreases as the clustering window increases; beyond 6–8 weeks the difference with non-clustered events is negligible. Catchment area, streamflow regime and precipitation magnitude also modulate the response. The impact of clustering is generally smaller in snow-dominated and large catchments. Additionally, particularly persistent periods of high discharge tend to occur in conjunction with temporal clusters of precipitation extremes.


2021 ◽  
Author(s):  
Mathieu Casado ◽  
Christophe Leroy-Dos Santos ◽  
Elise Fourré ◽  
Vincent Favier ◽  
Cécile Agosta ◽  
...  

&lt;p&gt;Stable water isotopes are effective hydrological tracers due to fractionation processes throughout the water cycle, and thus, the stable isotopes from ice cores can serve as valuable proxies for past changes in the climate and local environment of polar regions. Proper interpretation of these isotopes requires to understand the influence of each potential fractionating process, such as initial evaporation over the ocean and precipitation events, but also the effects of post-depositional exchange between snow and moisture in the atmosphere. Thanks to new developments in infrared spectroscopy, it is now possible to continuously monitor the isotopic composition of atmospheric water vapor in coordination with discrete snow sampling. This allows us to readily document the isotopic and mass exchanges between snow and vapor as well as the stability of the atmospheric boundary layer, as has recently been shown on the East Antarctic Plateau at Kohnen (Ritter et al., TC, 2016) and Dome C (Casado et al., ACP, 2016) stations where substantial diurnal isotopic variations have been recorded.&lt;/p&gt;&lt;p&gt;In this study, we present the first vapor monitoring of an East Antarctic transect that covered more than 3600 km over a period of 3 months from November 2019 to February 2020 as part of the EAIIST mission. The isotopic record therefore describes the evolution from typical coastal values to highly depleted values deep inside the continent on the high-altitude plateau. In parallel, we also monitored the vapor isotopic composition at two stations: the coastal starting point of Dumont D&amp;#8217;Urville (DDU) and the plateau halfway point of Dome C. Two automatic weather stations (at Paleo and Megadunes sites) were also installed in a previously unexplored region of the East Antarctic plateau that was covered by this transect. This suite of cross-calibrated vapor isotope observations and weather stations, coupled with Modele Atmospherique R&amp;#233;gional (MAR) climate modeling, offers a unique opportunity to compare the spatial and temporal gradients of humidity, temperature, and water vapor isotopic composition in East Antarctica during the summer season, and to estimate how the water vapour isotope measurements at Dome C and DDU are representative of the conditions in East Antarctica. The quantitative agreement between the EAIIST record and those recorded at DDU and Dome C stations at the times the raid was nearby, gives confidence in the quality of the results acquired on this traverse. Although further comparisons with the surface snow isotopic composition are required to quantify the impact of the snow-atmosphere exchanges on the local surface mass balance, these initial results of vapor isotopic composition show the potential of using water stables isotopes to evaluate hydrological processes in East Antarctica and better reconstruct past climate changes through ice cores.&lt;/p&gt;


2014 ◽  
Vol 119 (20) ◽  
pp. 11,662-11,681 ◽  
Author(s):  
Quentin Libois ◽  
Ghislain Picard ◽  
Laurent Arnaud ◽  
Samuel Morin ◽  
Eric Brun

2020 ◽  
Author(s):  
Emese Bottyán ◽  
Erzsébet Kristóf ◽  
Krisztina Kármán ◽  
László Haszpra ◽  
Tamás Weidinger ◽  
...  

&lt;p&gt;This study presents a detailed statistical analysis on the relationship of precipitation water origin and its stable hydrogen and oxygen isotope compositions for six sites in Hungary. We carried out a moisture source diagnostic by analyzing backward trajectories as it has become a common method for identifying moisture uptake locations. For providing 96 hours long precipitation-event based backward trajectories, we used the NOAA HYSPLIT model on daily basis for six sites of three elevation, 500 m, 1500 m and 3000 m. The moisture uptake regions were determined by calculating specific humidity along the trajectories. Five possible moisture source regions for precipitation were defined: Atlantic Ocean, North European Seas, Mediterranean Sea, Black Sea, Carpathian Basin and European continental areas excluding the Carpathian Basin. The main water vapor source areas are in order the continental regions following by the Mediterranean Sea and the Atlantic Ocean. However, there are spatial differences among the sampling sites reflecting the importance of the geographical locations. Principal component analysis based on the d-excess value of precipitation events showed that source regions such as the Carpathian Basin, the Atlantic Ocean and Mediterranean Sea are separated on the plain determined by the first two principal components. In order to evaluate the impact of the moisture source region on the d-excess value of precipitation events, we carried out ANOVA on the precipitation-event based macrosynoptic classification (Hess-Brezowsky and P&amp;#233;czely). Our results suggest that there are significant differences between amount-weighted d-excess values belonging to different macrosynoptic patterns and these types are related to precipitation events from different moisture source regions. Cluster analysis confirmed the differences in precipitation stable isotope values according to the moisture sources. The observations (precipitation events) were projected on the plain outspreaded by the first two principal components. The coordinates of the observations in this coordinate-system are separated according to the three main moisture source regions. Cluster analysis was also carried out based on d-excess values. The investigation showed that lower d-excess values are related to the Atlantic Ocean, while higher values to the Mediterranean Sea. Thus, we can conclude that the moisture source has strong impact on the stable isotope composition of precipitation water even relative far from the marine regions. The research was supported by the &amp;#218;NKP-19-3 New National Excellence Program of the Ministry for Innovation and Technology, the National Research, Development and Innovation Office (project No. OTKA NK 101664, PD 121387) and the AgroMo project (GINOP-2.3.2-15-2016-00028).&lt;/p&gt;


2015 ◽  
Vol 15 (5) ◽  
pp. 6887-6966 ◽  
Author(s):  
J. Erbland ◽  
J. Savarino ◽  
S. Morin ◽  
J. L. France ◽  
M. M. Frey ◽  
...  

Abstract. Unraveling the modern budget of reactive nitrogen on the Antarctic plateau is critical for the interpretation of ice core records of nitrate. This requires accounting for nitrate recycling processes occurring in near surface snow and the overlying atmospheric boundary layer. Not only concentration measurements, but also isotopic ratios of nitrogen and oxygen in nitrate, provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modelling is required to test hypotheses in a~quantitative manner. Here we introduce the model "TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow" (TRANSITS), a~novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air–snow interface on the East Antarctic plateau, in terms of concentrations (mass fraction) and the nitrogen (δ15N) and oxygen isotopic composition (17O}-excess, Δ17O) in nitrate. At the air–snow interface at Dome C (DC, 75°06' S, 123°19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow including the observed extraordinary high positive values (around +300 ‰) below 20 \\unit{cm}. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air–snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by a~few~‰. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15&amp;varepsilon;app, 17Eapp) to the snow accumulation rate. Building on this development, we propose a~framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions and δ15N in the nitrate archived in an ice core, may be used to derive information about past variations in the total ozone column and/or the primary inputs of nitrate above Antarctica as well as in nitrate trapping efficiency (defined as the ratio between the archived nitrate flux and the primary nitrate input flux). The Δ17O of nitrate could then be corrected from the impact of cage recombination effects associated with the photolysis of nitrate in snow. Past changes in the relative contributions of the Δ17O in the primary inputs of nitrate and the Δ17O in the locally cycled NO2 could then be determined. Therefore, information about the past variations in the local and long range processes operating on reactive nitrogen species could be obtained from ice cores collected in low accumulation regions such as the Antarctic plateau.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrea Spolaor ◽  
François Burgay ◽  
Rafael P. Fernandez ◽  
Clara Turetta ◽  
Carlos A. Cuevas ◽  
...  

AbstractPolar stratospheric ozone has decreased since the 1970s due to anthropogenic emissions of chlorofluorocarbons and halons, resulting in the formation of an ozone hole over Antarctica. The effects of the ozone hole and the associated increase in incoming UV radiation on terrestrial and marine ecosystems are well established; however, the impact on geochemical cycles of ice photoactive elements, such as iodine, remains mostly unexplored. Here, we present the first iodine record from the inner Antarctic Plateau (Dome C) that covers approximately the last 212 years (1800-2012 CE). Our results show that the iodine concentration in ice remained constant during the pre-ozone hole period (1800-1974 CE) but has declined twofold since the onset of the ozone hole era (~1975 CE), closely tracking the total ozone evolution over Antarctica. Based on ice core observations, laboratory measurements and chemistry-climate model simulations, we propose that the iodine decrease since ~1975 is caused by enhanced iodine re-emission from snowpack due to the ozone hole-driven increase in UV radiation reaching the Antarctic Plateau. These findings suggest the potential for ice core iodine records from the inner Antarctic Plateau to be as an archive for past stratospheric ozone trends.


2009 ◽  
Vol 71 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Melissa E. Schlegel ◽  
Alan L. Mayo ◽  
Steve Nelson ◽  
Dave Tingey ◽  
Rachel Henderson ◽  
...  

AbstractA 30 ka paleo-climate record of the Boise area, Idaho, USA has been delineated using groundwater stable isotopic compositions. Groundwater ages are modern (cold batholith), 5–15 ka (thermal batholith), 10–20 ka (frontal fault), and 20–30 ka (Snake River plain thermal). The stable isotopic composition of groundwaters have been used as a surrogate for the stable isotopic composition of precipitation. Using δ2H and δ18O compositions, local groundwater lines (LGWL's) were defined for each system. Each LGWL has been evaluated with defined slopes of 6.94 and 8, respectively, and resulting deuterium excess values (d) were found for each groundwater system for each slope. Time dependent changes in moisture source humidity and temperature, and Boise area recharge temperatures, calculated from stable isotopic data and the deuterium excess factors, agree with previous paleo-climate studies. Results indicate that from the last glacial maximum to the present time the humidity over the ocean moisture source increased by 9%, sea surface temperature at the moisture source increased 6–7°C, and local Boise temperature increased by 4–5°C. A greater increase of temperature at the moisture source as compared to the Boise area may impart be due to a shift in the moisture source area.


Sign in / Sign up

Export Citation Format

Share Document