scholarly journals Impact of spaceborne carbon monoxide observations from the S-5P platform on tropospheric composition analyses and forecasts

2017 ◽  
Vol 17 (2) ◽  
pp. 1081-1103 ◽  
Author(s):  
Rachid Abida ◽  
Jean-Luc Attié ◽  
Laaziz El Amraoui ◽  
Philippe Ricaud ◽  
William Lahoz ◽  
...  

Abstract. We use the technique of Observing System Simulation Experiments (OSSEs) to quantify the impact of spaceborne carbon monoxide (CO) total column observations from the Sentinel-5 Precursor (S-5P) platform on tropospheric analyses and forecasts. We focus on Europe for the period of northern summer 2003, when there was a severe heat wave episode associated with extremely hot and dry weather conditions. We describe different elements of the OSSE: (i) the nature run (NR), i.e., the truth; (ii) the CO synthetic observations; (iii) the assimilation run (AR), where we assimilate the observations of interest; (iv) the control run (CR), in this study a free model run without assimilation; and (v) efforts to establish the fidelity of the OSSE results. Comparison of the results from AR and the CR, against the NR, shows that CO total column observations from S-5P provide a significant benefit (at the 99 % confidence level) at the surface, with the largest benefit occurring over land in regions far away from emission sources. Furthermore, the S-5P CO total column observations are able to capture phenomena such as the forest fires that occurred in Portugal during northern summer 2003. These results provide evidence of the benefit of S-5P observations for monitoring processes contributing to atmospheric pollution.

2016 ◽  
Author(s):  
R. Abida ◽  
J.-L. Attié ◽  
L. El Amraoui ◽  
P. Ricaud ◽  
W. Lahoz ◽  
...  

Abstract. We use the technique of Observing System Simulation Experiments (OSSEs) to quantify the impact of spaceborne carbon monoxide (CO) total column observations from the Sentinel-5 Precursor (S-5P) platform on tropospheric analyses and forecasts. We focus on Europe for the period of northern summer 2003, when there was a severe heat wave episode associated with extremely hot and dry weather conditions. We describe different elements of the OSSE: (i) the Nature Run (NR), i.e., the "Truth"; ii) the CO synthetic observations; (iii) the assimilation run (AR), where we assimilate the observations of interest; (iv) the control run (CR), in this study a free model run without assimilation; and (v) efforts to establish the fidelity of the OSSE results. Comparison of the results from AR and the CR, against the NR, shows that CO total column observations from S-5P provide a significant benefit (at the 99 % confidence level) at the surface, with the largest benefit occurring over land in remote regions. Furthermore, the S-5P CO total column observations are able to capture phenomena such as the forest fires that occurred in Portugal during summer 2003. These results provide evidence of the benefit of S-5P observations for monitoring processes contributing to atmospheric pollution.


2021 ◽  
Vol 893 (1) ◽  
pp. 012010
Author(s):  
Sumaryati ◽  
D F Andarini ◽  
N Cholianawati ◽  
A Indrawati

Abstract East Nusa Tenggara is one of the provinces in Indonesia that has big forest fires following some provinces in Kalimantan and Sumatra. However, forest fires in East Nusa Tenggara have less attention in forest fires discussion in Indonesia. This study aims to analyze forest fires in East Nusa Tenggara and their impact on reducing visibility and increasing carbon monoxide (CO) from 2015 to 2019. In this study, hotspot, forest fire area, Oceanic Niño Index, visibility, and CO total column data were used to analyze the forest fires using a statistical comparison method in East Nusa Tenggara, Kalimantan, and Sumatra. The result shows that the number of hotspots in East Nusa Tenggara less than in Kalimantan and Sumatra for the same forest fire area. The forest fires in East Nusa Tenggara do not harm the atmospheric environment significantly. East Nusa Tenggara dominantly consists of savanna areas with no peatland, hence, the forest biomass burning produces less smoke and CO. Furthermore, the forest fire in East Nusa Tenggara has not an impact on decreasing visibility and increasing CO total column, in contrast, visibility in Sumatra and Kalimantan has fallen to 6 km from the annual average, and CO total column rise three times of normal condition during peak fire.


2015 ◽  
Vol 15 (9) ◽  
pp. 5275-5303 ◽  
Author(s):  
A. Inness ◽  
A.-M. Blechschmidt ◽  
I. Bouarar ◽  
S. Chabrillat ◽  
M. Crepulja ◽  
...  

Abstract. Daily global analyses and 5-day forecasts are generated in the context of the European Monitoring Atmospheric Composition and Climate (MACC) project using an extended version of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The IFS now includes modules for chemistry, deposition and emission of reactive gases, aerosols, and greenhouse gases, and the 4-dimensional variational data assimilation scheme makes use of multiple satellite observations of atmospheric composition in addition to meteorological observations. This paper describes the data assimilation setup of the new Composition-IFS (C-IFS) with respect to reactive gases and validates analysis fields of ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2) for the year 2008 against independent observations and a control run without data assimilation. The largest improvement in CO by assimilation of Measurements of Pollution in the Troposphere (MOPITT) CO columns is seen in the lower troposphere of the Northern Hemisphere (NH) extratropics during winter, and during the South African biomass-burning season. The assimilation of several O3 total column and stratospheric profile retrievals greatly improves the total column, stratospheric and upper tropospheric O3 analysis fields relative to the control run. The impact on lower tropospheric ozone, which comes from the residual of the total column and stratospheric profile O3 data, is smaller, but nevertheless there is some improvement particularly in the NH during winter and spring. The impact of the assimilation of tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) is small because of the short lifetime of NO2, suggesting that NO2 observations would be better used to adjust emissions instead of initial conditions. The results further indicate that the quality of the tropospheric analyses and of the stratospheric ozone analysis obtained with the C-IFS system has improved compared to the previous "coupled" model system of MACC.


2013 ◽  
Vol 13 (4) ◽  
pp. 11071-11109 ◽  
Author(s):  
D. Griffin ◽  
K. A. Walker ◽  
J. E. Franklin ◽  
M. Parrington ◽  
C. Whaley ◽  
...  

Abstract. We present the results of total column measurements of CO, C2H6 and fine mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over Eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back-trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward-trajectories to demonstrate that the enhanced CO, C2H6 and fine mode AOD seen near Halifax and Toronto originated from forest fires in Northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the emission ratio (ERC2H6/CO) and the emission factor (EFC2H6) of C2H6 (with respect to the CO emission) were estimated from these ground-based observations. These C2H6 emission results from boreal fires in Northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Monitoring of Burning Emissions (FLAMBE) inventory. Agreement within the stated measurement uncertainty was found for the magnitude of the enhancement of the total columns of CO (~3%) and C2H6 (~8%) between the measured and modelled results. However, there is a small shift in time (of approximately 6 h) of arrival of the plume over Halifax between the results.


2004 ◽  
Vol 4 (5) ◽  
pp. 4999-5017 ◽  
Author(s):  
L. N. Yurganov ◽  
P. Duchatelet ◽  
A. V. Dzhola ◽  
D. P. Edwards ◽  
F. Hase ◽  
...  

Abstract. Carbon monoxide total column amounts in the atmosphere have been measured in the High Northern Hemisphere (30°–90° N, HNH) between January 2002 and December 2003, based on the analysis of infrared solar spectra recorded with spectrometers of high and moderate resolution. They are compared to ground-level CO mixing ratios and to total column amounts measured from space by the Terra/MOPITT instrument. In comparison to the unperturbed 2000–2001 period, all these databases reveal increased CO abundances in 2002–2003 summer-autumn times, with maximum anomalies observed in September 2002 and August 2003. Using a simple two-box model, the corresponding annual CO emission anomalies have been found equal to 98 Tg in 2002 and 142 Tg in 2003, thus close to those for 1996 and 1998. It is most likely that strong boreal forest fires in the HNH induced the increased CO burdens.


2016 ◽  
Author(s):  
Imke Hüser ◽  
Hartwig Harder ◽  
Angelika Heil ◽  
Johannes W. Kaiser

Abstract. Lagrangian particle dispersion models (LPDMs) in backward mode are widely-used to quantify the impact of transboundary pollution on downwind sites. Most LPDM applications assume mixing of surface emissions in a boundary layer that is constant in height. The height of this mixing layer (ML), however, is subject to strong spatio-temporal variability. Neglecting this variability may introduce substantial errors in the quantification of source contributions. Here, we perform backward trajectory simulations with the FLEXPART model starting at Cyprus to quantify these errors. The simulations calculate the sensitivity to emissions of upwind pollution sources within the ML height. The emission sensitivity is used to quantify source contributions at the receptor and support the interpretation of ground measurements carried out during the CYPHEX campaign in July 2014. It is determined by two interacting factors: the dilution of pollutants within the ML and the number of trajectories impacted by the emissions. In this study, we calculate the emission sensitivity for a constant ML height of 300 m and a dynamical ML height to compare the resulting differences. The results show that the impact of emission sources is predominantly overestimated by the neglected dilution in expanded daytime ML heights. There is, however, substantial variability in the simulated differences. For shallow marine or nocturnal ML heights, for example, a ML assumed to high may lead to an underestimation of the intensive concentrations. This variability is predominantly caused by the spatio-temporal changes in ML heights and the meteorological conditions that drive the dispersion of the trajectories. In an application example, the impact of CO emissions from hypothetical forest fires is simulated and source contributions are compared for different ML heights. The resulting difference shows that the 300 m overestimates the total CO contributions from upwind sources by 16 %. Thus, it is recommended to generally implement a dynamic mixing layer height parametrization in LPDMs to prevent these errors.


2005 ◽  
Vol 5 (2) ◽  
pp. 563-573 ◽  
Author(s):  
L. N. Yurganov ◽  
P. Duchatelet ◽  
A. V. Dzhola ◽  
D. P. Edwards ◽  
F. Hase ◽  
...  

Abstract. Carbon monoxide total column amounts in the atmosphere have been measured in the High Northern Hemisphere (30°-90° N, HNH) between January 2002 and December 2003 using infrared spectrometers of high and moderate resolution and the Sun as a light source. They were compared to ground-level CO mixing ratios and to total column amounts measured from space by the Terra/MOPITT instrument. All these data reveal increased CO abundances in 2002-2003 in comparison to the unperturbed 2000-2001 period. Maximum anomalies were observed in September 2002 and August 2003. Using a simple two-box model, the corresponding annual CO emission anomalies (referenced to 2000-2001 period) have been found equal to 95Tg in 2002 and 130Tg in 2003, thus close to those for 1996 and 1998. A good correlation with hot spots detected by a satellite radiometer allows one to assume strong boreal forest fires, occurred mainly in Russia, as a source of the increased CO burdens.


2016 ◽  
Author(s):  
Yao Té ◽  
Pascal Jeseck ◽  
Bruno Franco ◽  
Emmanuel Mahieu ◽  
Nicholas Jones ◽  
...  

Abstract. Carbon monoxide (CO) is an atmospheric key species due to its toxicity and its impact on the atmospheric oxidizing capacity, both factors affecting air quality. The paper studies the altitude dependent seasonal variability of CO at the three different sites Paris, Jungfraujoch and Wollongong, with an emphasis on establishing a link between the CO vertical distribution and the nature of CO emission sources. The CO seasonal variability obtained from the total columns and from the free tropospheric partial columns shows a maximum around March-April and a minimum around September-October in the Northern Hemisphere (Paris and Jungfraujoch). In the Southern Hemisphere (Wollongong) this seasonal variability is shifted by about 6 months. Satellite observations by IASI-MetOp and MOPITT instruments confirm this seasonality. Ground-based FTIR is demonstrated to provide useful complementary information due to good sensitivity in the boundary layer. In situ surface measurements of CO volume mixing ratios in Paris and at Jungfraujoch reveal a time-lag of the near surface seasonal variability of about 2 months with respect to the total column variability at the same sites. The chemical transport model GEOS-Chem is employed to interpret our observations. GEOS-Chem sensitivity runs allow identifying the emission sources influencing the seasonal cycle of CO. In Paris and on top of Jungfraujoch, the surface seasonality is mainly driven by anthropogenic emissions, while the total column seasonality is also controlled by air masses transported from distant sources. In the case of Wollongong, where the CO seasonality is mainly affected by biomass burning, no time shift is observed between surface and above the boundary layer.


2013 ◽  
Vol 13 (20) ◽  
pp. 10227-10241 ◽  
Author(s):  
D. Griffin ◽  
K. A. Walker ◽  
J. E. Franklin ◽  
M. Parrington ◽  
C. Whaley ◽  
...  

Abstract. We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio – that is, in this case equivalent to the emission ratio (ERC2H6/CO) – was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE) inventory. Agreement within the stated measurement uncertainty (~3% for CO and ~8% for C2H6) was found for the magnitude of the enhancement of the CO and C2H6 total columns between the measured and modelled results. However, there is a small shift in time (of approximately 6 h) of arrival of the plume over Halifax between the results.


2015 ◽  
Vol 15 (4) ◽  
pp. 4265-4331 ◽  
Author(s):  
A. Inness ◽  
A.-M. Blechschmidt ◽  
I. Bouarar ◽  
S. Chabrillat ◽  
M. Crepulja ◽  
...  

Abstract. Daily global analyses and 5 day forecasts are generated in the context of the European Monitoring Atmospheric Composition and Climate (MACC) project using an extended version of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). IFS now includes modules for chemistry, deposition and emission of reactive gases, aerosols, and greenhouse gases, and the 4-dimensional variational data assimilation scheme makes use of multiple satellite observations of atmospheric composition in addition to meteorological observations. This paper describes the data assimilation setup of the new Composition-IFS (C-IFS) with respect to reactive gases and validates analysis fields of ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2) for the year 2008 against independent observations and a control run without data assimilation. The largest improvement in CO by assimilation of MOPITT CO columns is seen in the lower troposphere of the Northern Hemisphere (NH) Extratropics during winter, and during the South African biomass burning season. The assimilation of several O3 total column and stratospheric profile retrievals greatly improves the total column, stratospheric and upper tropospheric O3 analysis fields relative to the control run. The impact on lower tropospheric ozone, which comes from the residual of the total column and stratospheric profile O3 data, is smaller, but nevertheless there is some improvement particularly in the NH during winter and spring. The impact of the assimilation of OMI tropospheric NO2 columns is small because of the short lifetime of NO2, suggesting that NO2 observations would be better used to adjust emissions instead of initial conditions. The results further indicate that the quality of the tropospheric analyses and of the stratospheric ozone analysis obtained with the C-IFS system has improved compared to the previous "coupled" model system of MACC.


Sign in / Sign up

Export Citation Format

Share Document