scholarly journals Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere

2017 ◽  
Vol 17 (22) ◽  
pp. 13747-13766 ◽  
Author(s):  
Franziska Köllner ◽  
Johannes Schneider ◽  
Megan D. Willis ◽  
Thomas Klimach ◽  
Frank Helleis ◽  
...  

Abstract. Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range 50–3000 m) were conducted in July 2014 in the Canadian high Arctic during an aircraft-based measurement campaign (NETCARE 2014). We deployed the single particle laser ablation aerosol mass spectrometer ALABAMA (vacuum aerodynamic diameter range approximately 200–1000 nm) to identify different particle types and their mixing states. On the basis of the single particle analysis, we found that a significant fraction (23 %) of all analyzed particles (in total: 7412) contained trimethylamine (TMA). Two main pieces of evidence suggest that these TMA-containing particles originated from emissions within the Arctic boundary layer. First, the maximum fraction of particulate TMA occurred in the Arctic boundary layer. Second, compared to particles observed aloft, TMA particles were smaller and less oxidized. Further, air mass history analysis, associated wind data and comparison with measurements of methanesulfonic acid give evidence of a marine-biogenic influence on particulate TMA. Moreover, the external mixture of TMA-containing particles and sodium and chloride (Na ∕ Cl-) containing particles, together with low wind speeds, suggests particulate TMA results from secondary conversion of precursor gases released by the ocean. In contrast to TMA-containing particles originating from inner-Arctic sources, particles with biomass burning markers (such as levoglucosan and potassium) showed a higher fraction at higher altitudes, indicating long-range transport as their source. Our measurements highlight the importance of natural, marine inner-Arctic sources for composition and growth of summertime Arctic aerosol.

2017 ◽  
Author(s):  
Franziska Köllner ◽  
Johannes Schneider ◽  
Megan D. Willis ◽  
Thomas Klimach ◽  
Frank Helleis ◽  
...  

Abstract. Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range 50–3000 m) were conducted in July 2014 in the Canadian high Arctic during the aircraft-based measurement campaign NETCARE 2014. We deployed the single particle laser ablation aerosol mass spectrometer ALABAMA (vacuum aerodynamic diameter range approximately 200–1000 nm) to identify different particle types and their mixing states. On basis of the single particle analysis, we found that a significant fraction (23 %) of all analyzed particles (in total: 7412) contained trimethylamine (TMA). The identification of TMA in ambient mass spectra was confirmed by laboratory measurements. From the maximum occurrence of particulate TMA in the Arctic boundary layer and the higher abundance of smaller TMA-containing particles (maximum in the size distribution at 300 nm), we conclude that the TMA component of these particles resulted from emissions within the Arctic boundary layer. Air mass history according to FLEXPART backward simulations and associated wind data give evidence of a marine-biogenic influence on particulate TMA. The marine influence on particle chemical composition in the summertime Arctic is further demonstrated by the existence of larger sodium and chloride (Na/Cl-) containing particles which are mainly abundant in the boundary layer. Some of these sea spray particles were internally mixed with carbohydrates (e.g., cellulose) which likely originated from a sea surface microlayer enriched with microorganisms and organic compounds. The external mix of sea spray particles and TMA-containing particles suggests the latter result from secondary conversion of precursor gases from marine inner-Arctic sources. In contrast to TMA- and Na/Cl-containing aerosol types, particles with biomass-burning markers (such as levoglucosan) showed a higher fraction at higher altitudes, thereby indicating long-range transport as their source. Our measurements highlight the importance of natural, marine inner-Arctic sources for summertime Arctic aerosol.


2011 ◽  
Vol 11 (8) ◽  
pp. 3949-3979 ◽  
Author(s):  
K. Toyota ◽  
J. C. McConnell ◽  
A. Lupu ◽  
L. Neary ◽  
C. A. McLinden ◽  
...  

Abstract. Episodes of high bromine levels and surface ozone depletion in the springtime Arctic are simulated by an online air-quality model, GEM-AQ, with gas-phase and heterogeneous reactions of inorganic bromine species and a simple scheme of air-snowpack chemical interactions implemented for this study. Snowpack on sea ice is assumed to be the only source of bromine to the atmosphere and to be capable of converting relatively stable bromine species to photolabile Br2 via air-snowpack interactions. A set of sensitivity model runs are performed for April 2001 at a horizontal resolution of approximately 100 km×100 km in the Arctic, to provide insights into the effects of temperature and the age (first-year, FY, versus multi-year, MY) of sea ice on the release of reactive bromine to the atmosphere. The model simulations capture much of the temporal variations in surface ozone mixing ratios as observed at stations in the high Arctic and the synoptic-scale evolution of areas with enhanced BrO column amount ("BrO clouds") as estimated from satellite observations. The simulated "BrO clouds" are in modestly better agreement with the satellite measurements when the FY sea ice is assumed to be more efficient at releasing reactive bromine to the atmosphere than on the MY sea ice. Surface ozone data from coastal stations used in this study are not sufficient to evaluate unambiguously the difference between the FY sea ice and the MY sea ice as a source of bromine. The results strongly suggest that reactive bromine is released ubiquitously from the snow on the sea ice during the Arctic spring while the timing and location of the bromine release are largely controlled by meteorological factors. It appears that a rapid advection and an enhanced turbulent diffusion associated with strong boundary-layer winds drive transport and dispersion of ozone to the near-surface air over the sea ice, increasing the oxidation rate of bromide (Br−) in the surface snow. Also, if indeed the surface snowpack does supply most of the reactive bromine in the Arctic boundary layer, it appears to be capable of releasing reactive bromine at temperatures as high as −10 °C, particularly on the sea ice in the central and eastern Arctic Ocean. Dynamically-induced BrO column variability in the lowermost stratosphere appears to interfere with the use of satellite BrO column measurements for interpreting BrO variability in the lower troposphere but probably not to the extent of totally obscuring "BrO clouds" that originate from the surface snow/ice source of bromine in the high Arctic. A budget analysis of the simulated air-surface exchange of bromine compounds suggests that a "bromine explosion" occurs in the interstitial air of the snowpack and/or is accelerated by heterogeneous reactions on the surface of wind-blown snow in ambient air, both of which are not represented explicitly in our simple model but could have been approximated by a parameter adjustment for the yield of Br2 from the trigger.


2015 ◽  
Vol 8 (9) ◽  
pp. 9339-9372 ◽  
Author(s):  
P. Achtert ◽  
I. M. Brooks ◽  
B. J. Brooks ◽  
B. I. Moat ◽  
J. Prytherch ◽  
...  

Abstract. Three months of Doppler lidar wind measurements were obtained during the Arctic Cloud Summer Experiment on the icebreaker Oden during the summer of 2014. Such ship-borne measurements require active stabilisation to remove the effects of ship motion. We demonstrate that the combination of a commercial Doppler lidar with a custom-made motion-stabilisation platform enables the retrieval of wind profiles in the Arctic boundary layer during both cruising and ice-breaking with statistical uncertainties comparable to land-based measurements. This holds particularly within the planetary boundary layer even though the overall aerosol load was very low. Motion stabilisation was successful for high wind speeds in open water and the resulting wave conditions. It allows for the retrieval of winds with a random error below 0.2 m s−1, comparable to the measurement error of standard radiosondes. The combination of a motion-stabilised platform with a low-maintenance autonomous Doppler lidar has the potential to enable continuous long-term high-resolution ship-based wind profile measurements over the oceans.


2010 ◽  
Vol 10 (11) ◽  
pp. 26207-26278 ◽  
Author(s):  
K. Toyota ◽  
J. C. McConnell ◽  
A. Lupu ◽  
L. Neary ◽  
C. A. McLinden ◽  
...  

Abstract. Episodes of high bromine levels and surface ozone depletion in the springtime Arctic are simulated by an online air-quality model, GEM-AQ, with gas-phase and heterogeneous reactions of inorganic bromine species and a simple scheme of air-snowpack chemical interactions implemented for this study. Snowpack on sea ice is assumed to be the only source of bromine to the atmosphere and capable of converting relatively stable bromine species to photolabile Br2 via air-snowpack interactions. A "bromine explosion", by which Br− retained in the snowpack is autocatalytically released to the atmosphere as a result of dry deposition of HOBr and BrONO2, is assumed to occur on young, first-year (FY) sea ice (or its overlying snowpack), whereas the snowpack on old, multi-year (MY) sea ice and over land is assumed only to recycle a part (but up to 100%) of bromine reservoirs lost via dry deposition back to Br2. Model runs are performed for April 2001 at a horizontal resolution of approximately 100 km × 100 km in the Arctic. The model simulates temporal variations in surface ozone mixing ratios as observed at stations in the high Arctic and the synoptic-scale evolution of enhanced BrO column amounts ("BrO clouds") as seen from satellite reasonably well. The results strongly suggest: (1) a ubiquitous source of reactive bromine exists on the FY sea ice during the Arctic springtime; and (2) the timing of bromine release to the atmosphere is largely controlled by meteorological forcing on the transport of ozone to the near-surface air. Also, if the surface snowpack supplies most of the reactive bromine in the Arctic boundary layer, it should be capable of releasing reactive bromine at temperatures as high as −10 °C, particularly on the FY sea ice in the central and eastern Arctic Ocean. Dynamically-induced BrO column variability in the lowermost stratosphere appears to interfere with the use of satellite BrO column measurements for interpreting BrO variability in the lower troposphere but probably not to the extent of totally obscuring "BrO clouds" associated with the surface source of bromine in the high Arctic. Contrary to our original intention, the present air-snowpack interaction scheme yields a majority of atmospheric bromine input via Br2 release associated empirically with a dry deposition of ozone on the snow/ice surface under sunlight to represent a trigger of bromine explosion. This implies that the bromine explosion actually occurs in the interstitial air of snowpack and/or is accelerated by heterogeneous reactions on the surface of wind-blown snow in ambient air, both of which are missing in our model but could have been approximated by a parameter adjustment for the yield of Br2 from the trigger.


2019 ◽  
Author(s):  
Heiko Bozem ◽  
Peter Hoor ◽  
Daniel Kunkel ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by transport of mid-latitude air masses into the Arctic, whereas during the summer precipitation and natural sources play the most important role. Within the Arctic region, there exists a transport barrier, known as the polar dome, which results from sloping isentropes. The polar dome, which varies in space and time, exhibits a strong influence on the transport of air masses from mid-latitudes, enhancing it during winter and inhibiting it during summer. Furthermore, a definition for the location of the polar dome boundary itself is quite sparse in the literature. We analyzed aircraft based trace gas measurements in the Arctic during two NETCARE airborne field camapigns (July 2014 and April 2015) with the Polar 6 aircraft of Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Bremerhaven, Germany, covering an area from Spitsbergen to Alaska (134° W to 17° W and 68° N to 83° N). For the spring (April 2015) and summer (July 2014) season we analyzed transport regimes of mid-latitude air masses travelling to the high Arctic based on CO and CO2 measurements as well as kinematic 10-day back trajectories. The dynamical isolation of the high Arctic lower troposphere caused by the transport barrier leads to gradients of chemical tracers reflecting different local chemical life times and sources and sinks. Particularly gradients of CO and CO2 allowed for a trace gas based definition of the polar dome boundary for the two measurement periods with pronounced seasonal differences. For both campaigns a transition zone rather than a sharp boundary was derived. For July 2014 the polar dome boundary was determined to be 73.5° N latitude and 299–303.5 K potential temperature, respectively. During April 2015 the polar dome boundary was on average located at 66–68.5° N and 283.5–287.5 K. Tracer-tracer scatter plots and probability density functions confirm different air mass properties inside and outside of the polar dome for the July 2014 and April 2015 data set. Using the tracer derived polar dome boundaries the analysis of aerosol data indicates secondary aerosol formation events in the clean summertime polar dome. Synoptic-scale weather systems frequently disturb this transport barrier and foster exchange between air masses from midlatitudes and polar regions. During the second phase of the NETCARE 2014 measurements a pronounced low pressure system south of Resolute Bay brought inflow from southern latitudes that pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 ppbv to 84.9 ± 4.7 ppbv from the first period to the second period. At the same time CO2 mixing ratios significantly dropped from 398.16 ± 1.01 ppmv to 393.81 ± 2.25 ppmv. We further analysed processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the spring time polar dome mainly experienced diabatic cooling while travelling over cold surfaces. In contrast air masses in the summertime polar dome were diabatically heated due to insolation. During both seasons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above caused by radiative cooling. The ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a northward motion. Our results demonstrate the successful application of a tracer based diagnostic to determine the location of the polar dome boundary.


2010 ◽  
Vol 3 (5) ◽  
pp. 4313-4354
Author(s):  
A. Roiger ◽  
H. Aufmhoff ◽  
P. Stock ◽  
F. Arnold ◽  
H. Schlager

Abstract. An airborne chemical ionization ion trap mass spectrometer instrument (CI-ITMS) has been developed for tropospheric and stratospheric fast in-situ measurements of PAN (peroxyacetyl nitrate) and PPN (peroxypropionyl nitrate). The first scientific deployment of the FASTPEX instrument (FASTPEX = Fast Measurement of Peroxyacyl nitrates) took place in the Arctic during 18 missions aboard the DLR research aircraft Falcon, within the framework of the POLARCAT-GRACE campaign in the summer of 2008. The FASTPEX instrument is described and characteristic properties of the employed ion trap mass spectrometer are discussed. Atmospheric data obtained at altitudes of up to ~12 km are presented, from the boundary layer to the lowermost stratosphere. Data were sampled with a time resolution of 2 s and a 2σ detection limit of 25 pmol mol−1. An isotopically labelled standard was used for a permanent online calibration. For this reason the accuracy of the PAN measurements is better than ±10% for mixing ratios greater than 200 pmol mol−1. PAN mixing ratios in the summer Arctic troposphere were in the order of a few hundred pmol mol−1 and generally correlated well with CO. In the Arctic boundary layer and lowermost stratosphere smaller PAN mixing ratios were observed due to a combination of missing local sources of PAN precursor gases and efficient removal processes (thermolysis/photolysis). PPN, the second most abundant PAN homologue, was measured simultanously. Observed PPN/PAN ratios range between ~0.03 and 0.3.


2010 ◽  
Vol 10 (2) ◽  
pp. 2221-2244 ◽  
Author(s):  
L. Huang ◽  
S. L. Gong ◽  
S. Sharma ◽  
D. Lavoué ◽  
C. Q. Jia

Abstract. Black carbon (BC) particles accumulated in the Arctic troposphere and deposited over snow have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, transport pathways affecting Alert (82.5° N, 62.5° W), Nunavut in Canada are identified in this work, along with the associated transport frequency. Based on the atmospheric transport frequency and the estimated BC emission intensity from surrounding regions, a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measured at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively). Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that Eurasia is the major contributor to the near-surface BC levels at the Canadian High Arctic site with an average contribution of over 85% during the 16-year period. In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more predominant with a multi-year average of 94%. The model estimates smaller contribution from the Eurasian sector in spring (70%) than that in winter. It is also found that the change in Eurasian contributions depends mainly on the reduction of emission intensity, while the changes in both emission and atmospheric transport contributed to the inter-annual variation of North American contributions.


2017 ◽  
Author(s):  
Franziska Köllner ◽  
Johannes Schneider ◽  
Megan D. Willis ◽  
Thomas Klimach ◽  
Frank Helleis ◽  
...  

2017 ◽  
Vol 17 (8) ◽  
pp. 5515-5535 ◽  
Author(s):  
Julia Burkart ◽  
Megan D. Willis ◽  
Heiko Bozem ◽  
Jennie L. Thomas ◽  
Kathy Law ◽  
...  

Abstract. Motivated by increasing levels of open ocean in the Arctic summer and the lack of prior altitude-resolved studies, extensive aerosol measurements were made during 11 flights of the NETCARE July 2014 airborne campaign from Resolute Bay, Nunavut. Flights included vertical profiles (60 to 3000 m above ground level) over open ocean, fast ice, and boundary layer clouds and fogs. A general conclusion, from observations of particle numbers between 5 and 20 nm in diameter (N5 − 20), is that ultrafine particle formation occurs readily in the Canadian high Arctic marine boundary layer, especially just above ocean and clouds, reaching values of a few thousand particles cm−3. By contrast, ultrafine particle concentrations are much lower in the free troposphere. Elevated levels of larger particles (for example, from 20 to 40 nm in size, N20 − 40) are sometimes associated with high N5 − 20, especially over low clouds, suggestive of aerosol growth. The number densities of particles greater than 40 nm in diameter (N >  40) are relatively depleted at the lowest altitudes, indicative of depositional processes that will lower the condensation sink and promote new particle formation. The number of cloud condensation nuclei (CCN; measured at 0.6 % supersaturation) are positively correlated with the numbers of small particles (down to roughly 30 nm), indicating that some fraction of these newly formed particles are capable of being involved in cloud activation. Given that the summertime marine Arctic is a biologically active region, it is important to better establish the links between emissions from the ocean and the formation and growth of ultrafine particles within this rapidly changing environment.


Sign in / Sign up

Export Citation Format

Share Document