scholarly journals A trajectory analysis of atmospheric transport of black carbon aerosols to Canadian High Arctic in winter and spring (1990–2005)

2010 ◽  
Vol 10 (2) ◽  
pp. 2221-2244 ◽  
Author(s):  
L. Huang ◽  
S. L. Gong ◽  
S. Sharma ◽  
D. Lavoué ◽  
C. Q. Jia

Abstract. Black carbon (BC) particles accumulated in the Arctic troposphere and deposited over snow have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, transport pathways affecting Alert (82.5° N, 62.5° W), Nunavut in Canada are identified in this work, along with the associated transport frequency. Based on the atmospheric transport frequency and the estimated BC emission intensity from surrounding regions, a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measured at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively). Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that Eurasia is the major contributor to the near-surface BC levels at the Canadian High Arctic site with an average contribution of over 85% during the 16-year period. In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more predominant with a multi-year average of 94%. The model estimates smaller contribution from the Eurasian sector in spring (70%) than that in winter. It is also found that the change in Eurasian contributions depends mainly on the reduction of emission intensity, while the changes in both emission and atmospheric transport contributed to the inter-annual variation of North American contributions.

2010 ◽  
Vol 10 (11) ◽  
pp. 5065-5073 ◽  
Author(s):  
L. Huang ◽  
S. L. Gong ◽  
S. Sharma ◽  
D. Lavoué ◽  
C. Q. Jia

Abstract. Black carbon (BC) particles accumulated in the Arctic troposphere and deposited on snow have been calculated to have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, seven distinct transport pathways (or clusters) affecting Alert (82.5° N, 62.5° W), Nunavut in Canada are identified in this work. Transport frequency associated with each pathway is obtained as the fraction of trajectories in that cluster. Based on atmospheric transport frequency and BC surface flux from surrounding regions (i.e. North America, Europe, and former USSR), a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measurements at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively). Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Other factors, such as deposition, could also contribute to the variability in BC concentrations but were not considered in this analysis. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that former USSR is the major contributor to the near-surface BC levels at the Canadian high Arctic site with an average contribution of about 67% during the 16-year period, followed by European Union (18%) and North America (15%). In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more predominant with a multi-year average of 94%. The model estimates smaller contribution from the Eurasian sector in spring (70%) than that in winter. It is also found that the inter-annual variation in Eurasian contributions depends mainly on the reduction of emissions, while the changes in both emission and atmospheric transport contributed to the inter-annual variation of North American contributions.


2018 ◽  
Vol 18 (15) ◽  
pp. 11345-11361 ◽  
Author(s):  
John K. Kodros ◽  
Sarah J. Hanna ◽  
Allan K. Bertram ◽  
W. Richard Leaitch ◽  
Hannes Schulz ◽  
...  

Abstract. Transport of anthropogenic aerosol into the Arctic in the spring months has the potential to affect regional climate; however, modeling estimates of the aerosol direct radiative effect (DRE) are sensitive to uncertainties in the mixing state of black carbon (BC). A common approach in previous modeling studies is to assume an entirely external mixture (all primarily scattering species are in separate particles from BC) or internal mixture (all primarily scattering species are mixed in the same particles as BC). To provide constraints on the size-resolved mixing state of BC, we use airborne single-particle soot photometer (SP2) and ultrahigh-sensitivity aerosol spectrometer (UHSAS) measurements from the Alfred Wegener Institute (AWI) Polar 6 flights from the NETCARE/PAMARCMIP2015 campaign to estimate coating thickness as a function of refractory BC (rBC) core diameter and the fraction of particles containing rBC in the springtime Canadian high Arctic. For rBC core diameters in the range of 140 to 220 nm, we find average coating thicknesses of approximately 45 to 40 nm, respectively, resulting in ratios of total particle diameter to rBC core diameters ranging from 1.6 to 1.4. For total particle diameters ranging from 175 to 730 nm, rBC-containing particle number fractions range from 16 % to 3 %, respectively. We combine the observed mixing-state constraints with simulated size-resolved aerosol mass and number distributions from GEOS-Chem–TOMAS to estimate the DRE with observed bounds on mixing state as opposed to assuming an entirely external or internal mixture. We find that the pan-Arctic average springtime DRE ranges from −1.65 to −1.34 W m−2 when assuming entirely externally or internally mixed BC. This range in DRE is reduced by over a factor of 2 (−1.59 to −1.45 W m−2) when using the observed mixing-state constraints. The difference in DRE between the two observed mixing-state constraints is due to an underestimation of BC mass fraction in the springtime Arctic in GEOS-Chem–TOMAS compared to Polar 6 observations. Measurements of mixing state provide important constraints for model estimates of DRE.


2018 ◽  
Author(s):  
John K. Kodros ◽  
Sarah Hanna ◽  
Allan Bertram ◽  
W. Richard Leaitch ◽  
Hannes Schulz ◽  
...  

Abstract. Transport of anthropogenic aerosol into the Arctic in the spring months has the potential to affect regional climate; however, modeling estimates of the aerosol direct radiative effect (DRE) are sensitive to uncertainties in the mixing state of black carbon (BC). A common approach in previous modeling studies is to assume an entirely external mixture (all primarily scattering species are in separate particles from BC) or internal mixture (all primarily scattering species are mixed in the same particles as BC). To provide constraints on the size-resolved mixing state of BC, we use airborne Single Particle Soot Photometer (SP2) and Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) measurements from the Alfred Wegener Institute (AWI) POLAR6 flights from the NETCARE/PAMARCMIP2015 campaign to estimate coating thickness as a function of refractory BC (rBC) core diameter as well as the fraction of particles containing rBC in the springtime Canadian high Arctic. For rBC core diameters in the range of 140 to 220 nm, we find average coating thicknesses of approximately 45 to 40 nm, respectively, resulting in ratios of total particle diameter to rBC core diameters ranging from 1.6 to 1.4. For total particle diameters ranging from 175 to 730 nm, rBC-containing particle number fractions range from 16 to 3 %, respectively. We combine the observed mixing-state constraints with simulated size-resolved aerosol mass and number distributions from GEOS-Chem-TOMAS to estimate the DRE with observed bounds on mixing state as opposed to assuming an entirely external or internal mixture. We find that the pan-Arctic average springtime DRE ranges from −1.65 W m−2 to −1.34 W m−2 when assuming entirely externally or internally mixed BC. Using the observed mixing-state constraints, we find the DRE is 0.05 W m−2 and 0.19 W m−2 less negative than the external mixing-state assumption when constraining by coating thickness of the mixed particles and by BC-containing particle number fraction, respectively. The difference between these methods is due to an underestimation of BC mass fraction in the springtime Arctic in GEOS-Chem-TOMAS compared to POLAR6 observations. Measurements of mixing state provide important constraints for model estimates of DRE.


2020 ◽  
Author(s):  
Mariusz Majdanski ◽  
Artur Marciniak ◽  
Bartosz Owoc ◽  
Wojciech Dobiński ◽  
Tomasz Wawrzyniak ◽  
...  

<p>The Arctic regions are the place of the fastest observed climate change. One of the indicators of such evolution are changes occurring in the glaciers and the subsurface in the permafrost. The active layer of the permafrost as the shallowest one is well measured by multiple geophysical techniques and in-situ measurements.</p><p>Two high arctic expeditions have been organized to use seismic methods to recognize the shape of the permafrost in two seasons: with the unfrozen ground (October 2017) and frozen ground (April 2018). Two seismic profiles have been designed to visualize the shape of permafrost between the sea coast and the slope of the mountain, and at the front of a retreating glacier. For measurements, a stand-alone seismic stations has been used with accelerated weight drop with in-house modifications and timing system. Seismic profiles were acquired in a time-lapse manner and were supported with GPR and ERT measurements, and continuous temperature monitoring in shallow boreholes.</p><p>Joint interpretation of seismic and auxiliary data using Multichannel analysis of surface waves, First arrival travel-time tomography and Reflection imaging show clear seasonal changes affecting the active layer where P-wave velocities are changing from 3500 to 5200 m/s. This confirms the laboratory measurements showing doubling the seismic velocity of water-filled high-porosity rocks when frozen. The same laboratory study shows significant (>10%) increase of velocity in frozen low porosity rocks, that should be easily visible in seismic.</p><p>In the reflection seismic processing, the most critical part was a detailed front mute to eliminate refracted arrivals spoiling wide-angle near-surface reflections. Those long offset refractions were however used to estimate near-surface velocities further used in reflection processing. In the reflection seismic image, a horizontal reflection was traced at the depth of 120 m at the sea coast deepening to the depth of 300 m near the mountain.</p><p>Additionally, an optimal set of seismic parameters has been established, clearly showing a significantly higher signal to noise ratio in case of frozen ground conditions even with the snow cover. Moreover, logistics in the frozen conditions are much easier and a lack of surface waves recorded in the snow buried geophones makes the seismic processing simpler.</p><p>Acknowledgements               </p><p>This research was funded by the National Science Centre, Poland (NCN) Grant UMO-2015/21/B/ST10/02509.</p>


1989 ◽  
Vol 12 ◽  
pp. 152-156 ◽  
Author(s):  
W.M. Sackinger ◽  
M.O. Jeffries ◽  
H. Tippens ◽  
F. Li ◽  
M. Lu

The largest ice island presently known to exist in the Arctic Ocean has a mass of about 700 × 106 tonnes, an area of about 26 km2, and a mean thickness of 42.5 m. Known as Hobson’s Ice Island, this large ice feature has been tracked almost continuously since August 1983 with a succession of Argos buoys. In this paper, two particular ice-island movement episodes near the north-west coast of Axel Heiberg Island are described: 6–16 May 1986 and 14–21 June 1986. Each movement episode is analyzed in terms of the forces acting on the ice island, including wind shear, water drag, water shear, Coriolis force, sea-surface tilt, and pack-ice force. Ice-island movement is generally preceded by an offshore surface wind, and a threshold wind speed of 6 m s°1 appears to be necessary to initiate ice-island motion. An angle of 50° between surface wind and ice-island movement direction is noted during one episode. The pack-ice force, which appears to be the dominant arresting factor of ice-island motion for these two episodes, varies from 100° to 180° to the left of the ice-island velocity direction, depending upon whether the ice island is accelerating or decelerating.


2015 ◽  
Vol 15 (16) ◽  
pp. 9681-9692 ◽  
Author(s):  
A. Massling ◽  
I. E. Nielsen ◽  
D. Kristensen ◽  
J. H. Christensen ◽  
L. L. Sørensen ◽  
...  

Abstract. Measurements of equivalent black carbon (EBC) in aerosols at the high Arctic field site Villum Research Station (VRS) at Station Nord in North Greenland showed a seasonal variation in EBC concentrations with a maximum in winter and spring at ground level. Average measured concentrations were about 0.067 ± 0.071 for the winter and 0.011 ± 0.009 for the summer period. These data were obtained using a multi-angle absorption photometer (MAAP). A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. Here, measured average concentrations were about 0.485 ± 0.397 for the winter and 0.112 ± 0.072 for the summer period. A correlation between EBC and sulfate concentrations was observed over the years 2011 to 2013 stating a correlation coefficient of R2 = 0.72. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. BC and sulfate are known to have only partly similar sources with respect to their transport pathways when reaching the high Arctic. Aging processes may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon) based on a thermo-optical method were determined and compared to EBC measurements. EBC measurements were generally higher, but a correlation between EC and EBC resulted in a correlation coefficient of R2 = 0.64. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Eulerian Hemispheric Model, DEHM. Good agreement between measured and modeled concentrations of both EBC/BC and sulfate was observed. Also, the correlation between BC and sulfate concentrations was confirmed based on the model results observed over the years 2011 to 2013 stating a correlation coefficient of R2 = 0.74. The dominant source is found to be combustion of fossil fuel with biomass burning as a minor, albeit significant source.


2007 ◽  
Vol 20 (18) ◽  
pp. 4586-4598 ◽  
Author(s):  
Alex S. Gardner ◽  
Martin Sharp

Abstract Variability in July mean surface air temperatures from 1963 to 2003 accounted for 62% of the variance in the regional annual glacier mass balance signal for the Canadian High Arctic. A regime shift to more negative regional glacier mass balance occurred between 1986 and 1987, and is linked to a coincident shift from lower to higher mean July air temperatures. Both the interannual changes and the regime shifts in regional glacier mass balance and July air temperatures are related to variations in the position and strength of the July circumpolar vortex. In years when the July vortex is “strong” and its center is located in the Western Hemisphere, positive mass balance anomalies prevail. In contrast, highly negative mass balance anomalies occur when the July circumpolar vortex is either weak or strong without elongation over the Canadian High Arctic, and its center is located in the Eastern Hemisphere. The occurrence of westerly positioned July vortices has decreased by 40% since 1987. The associated shift to a dominantly easterly positioned July vortex was associated with an increased frequency of tropospheric ridging over the Canadian High Arctic, higher surface air temperatures, and more negative regional glacier mass balance.


2017 ◽  
Vol 3 (2) ◽  
pp. 334-353 ◽  
Author(s):  
Michel Paquette ◽  
Daniel Fortier ◽  
Warwick F. Vincent

Water tracks play a major role in the headwater basin hydrology of permafrost landscapes in Alaska and Antarctica, but less is known about these features in the High Arctic. We examined the physical and hydrological properties of water tracks on Ward Hunt Island, a polar desert site in the Canadian High Arctic, to evaluate their formation process and to compare with water tracks reported elsewhere. These High Arctic water tracks flowed through soils that possessed higher near-surface organic carbon concentrations, higher water content, and coarser material than the surrounding soils. The water track morphology suggested they were initiated by a combination of sorting, differential frost heaving, and eluviation. The resultant network of soil conduits, comparable to soil pipes, dominated the hydrology of the slope. The flow of cold water through these conduits slowed down the progression of the thawing front during summer, making the active layer consistently shallower relative to adjacent soils. Water tracks on Ward Hunt Island, and in polar desert catchments with these features elsewhere in the High Arctic, strongly influence slope hydrology and active-layer properties while also affecting vegetation distribution and the quality of runoff to the downstream lake.


Sign in / Sign up

Export Citation Format

Share Document